-
摘要:
颤振主动抑制(AFS)是国际上普遍推崇的颤振问题解决方案,对现代飞行器设计具有重要意义。基于国际上滑模观测器的二维机翼AFS应用,以双后缘控制面真实机翼模型为对象,发展一种低阶滑模观测器的三维机翼AFS设计方法。该观测器性能优越、特点鲜明,但传统的设计流程繁琐,限制了其在高阶模型对象上的使用。本文借助线性二次型高斯(LQG)方法中的最优滤波器增益矩阵,提出一种简化的滑模观测器设计流程。结合气动弹性物理背景,使本文方法理论上能够应用于实践。算例对比分析结果表明,本文方法比LQG方法具有更好的抵抗噪声能力。
-
关键词:
- 气动弹性 /
- 颤振主动抑制(AFS) /
- 线性二次型最优控制 /
- 滑模控制 /
- 滑模观测器
Abstract:Active flutter suppression (AFS) is a worldwide well proposed solution for the flutter of aircraft, which plays an important role in modern aircraft design. Many studies have shed some light on the AFS usage of sliding mode control strategy and the sliding mode observer, acting on two-dimensional wings. Herein, a wind-tunnel model of an actual wing which has two tailing-edge flaps is selected to examine the effectiveness of a low-order sliding mode observer which will be applied to AFS design of 3D wing. This observer has superior performance and distinctive features. However, the traditional complicated design routine limits its application to high-order objects. A new simplified design procedure is proposed by using a gain matrix of the Kalman filter in linear quadratic Gaussian (LQG) method. Then, considering the physical property of aeroelasticity, the new method can be put into practice theoretically. Comparison analyses are given. The results indicate that the sliding mode observer method has a better noise resistance ability than the LQG method.
-
表 1 动力学模型模态列表(翼根固支约束)
Table 1. List of vibration modes of dynamic model (cantilever restriction)
序号 模态名称 模态频率/Hz 试验值/Hz 1 一阶弯曲 1.61 2 二阶弯曲 6.21 6.19 3 一阶扭转 14.75 14.85 4 三阶弯曲 16.48 16.65 5 四阶弯曲 27.60 27.91 6 二阶扭转 33.71 -
[1] THOMPSON G O, KASS G J.Active flutter suppression-An emerging technology[J].Journal of Aircraft, 1972, 9(3):230-235. doi: 10.2514/3.58962 [2] MUKHOPADHYAY V.Flutter suppression digital control law design and testing for the AFW wind-tunnel model:AIAA-1992-2095[R].Reston:AIAA, 1992. [3] NISSIM E.Reduction of aerodynamic augmented states in active flutter suppression systems[J].Journal of Aircraft, 1991, 28(1):82-93. doi: 10.2514/3.45995 [4] MAHESH J K, STONE C R, GARRARD W L, et al.Control law synthesis for flutter suppression using linear quadratic Gaussian theory[J].Journal of Guidance, Control, and Dynamics, 1981, 4(4):415-422. doi: 10.2514/3.56094 [5] 吴志刚, 杨超.主动气动弹性机的颤振主动抑制与阵风减缓研究[J].机械强度, 2003, 25(1):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200301008.htmWU Z G, YANG C.Investigation on active flutter suppression and gust alleviation for an active aeroelastic wing[J].Journal of Mechanical Strength, 2003, 25(1):32-35(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200301008.htm [6] NA S, LIBRESCU L, MARZOCCA P, et al.Aeroelastic response of flapped wing systems using robust estimation methodology:AIAA-2004-1673[R].Reston:AIAA, 2004. [7] KIM K W, LEE B, NA S, et al.Comparative analysis of control performances applied to a 3-DOFs nonlinear supersonic lifting surface:AIAA-2008-1724[R].Reston:AIAA, 2008. [8] LEE K W, SINGH S N.Robust higher-order sliding-mode finite-time control of aeroelastic systems[J].Journal of Guidance, Control, and Dynamics, 2014, 37(5):1664-1670. doi: 10.2514/1.G000456 [9] ZHANG H Y, SHI Z K.Variable structure control of catastrophic course in airdropping heavy cargo[J].Chinese Journal of Aeronautics, 2009, 22(5):520-527. doi: 10.1016/S1000-9361(08)60135-1 [10] 宋晨, 吴志刚, 杨超.二元机翼滑模变结构控制颤振主动抑制[J].北京航空航天大学学报, 2010, 36(11):1400-1403. http://bhxb.buaa.edu.cn/CN/abstract/abstract11828.shtmlSONG C, WU Z G, YANG C.Sliding mode variable structure control of flutter suppression for a two-dimensional wing[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11):1400-1403(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11828.shtml [11] YANG C, SONG C, WU Z G, et al.Application of output feedback sliding mode control to active flutter suppression of two-dimensional airfoil[J].Science China:Technological Sciences, 2010, 53(5):1338-1348. doi: 10.1007/s11431-010-0099-z [12] SONG C, WU Z G, YANG C.Active flutter suppression of a two-dimensional airfoil based on sliding mode control method[C]//The 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, Harbin, 2010. [13] EDWARDS C, SPURGEON S K.Sliding mode control:Theory and applications[M].London:Taylor & Francis, 1998. [14] 杨超, 吴志刚, 万志强, 等.飞行器气动弹性原理[M].北京:北京航空航天大学出版社, 2011.YANG C, WU Z G, WAN Z Q, et al.Principles of aeroelasticity for air vehicles[M].Beijing:Beihang University Press, 2011 (in Chinese). [15] YURKOVICH R.Status of unsteady aerodynamic prediction for flutter of high-performance aircraft[J].Journal of Aircraft, 2003, 40(5):832-842. doi: 10.2514/2.6874 [16] 陈磊, 吴志刚, 杨超, 等.多控制面机翼阵风减缓主动控制与风洞试验验证[J].航空学报, 2009, 30(12):2250-2256. doi: 10.3321/j.issn:1000-6893.2009.12.002CHEN L, WU Z G, YANG C, et al.Active control and wind tunnel test verification of multi-control surface wing for gust alleviation[J].Acta Aeronoutica et Astronautica Sinica, 2009, 30(12):2250-2256(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.12.002 [17] 宋晨, 杨超, 吴志刚.3种气动弹性状态空间建模方法的对比[J].航空学报, 2007, 28(Sup.):S81-S86. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2007S1015.htmSONG C, YANG C, WU Z G.Comparison of three aeroelastic state-space modeling methods[J].Acta Aeronoutica et Astronautica Sinica, 2007, 28(Sup.):S81-S86(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2007S1015.htm [18] 吴敏, 桂卫华, 何勇.现代鲁棒控制[M].2版.长沙:中南大学出版社, 2006.WU M, GUI W H, HE Y.Modern robust control[M].2nd ed.Changsha:Central South University Press, 2006(in Chinese).