留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

战斗机武器外挂投放与内埋投放比较

张群峰 闫盼盼 黎军

张群峰, 闫盼盼, 黎军等 . 战斗机武器外挂投放与内埋投放比较[J]. 北京航空航天大学学报, 2017, 43(6): 1085-1097. doi: 10.13700/j.bh.1001-5965.2016.0497
引用本文: 张群峰, 闫盼盼, 黎军等 . 战斗机武器外挂投放与内埋投放比较[J]. 北京航空航天大学学报, 2017, 43(6): 1085-1097. doi: 10.13700/j.bh.1001-5965.2016.0497
ZHANG Qunfeng, YAN Panpan, LI Junet al. Comparison between external store separation and buried store separation of fighter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1085-1097. doi: 10.13700/j.bh.1001-5965.2016.0497(in Chinese)
Citation: ZHANG Qunfeng, YAN Panpan, LI Junet al. Comparison between external store separation and buried store separation of fighter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1085-1097. doi: 10.13700/j.bh.1001-5965.2016.0497(in Chinese)

战斗机武器外挂投放与内埋投放比较

doi: 10.13700/j.bh.1001-5965.2016.0497
基金项目: 

国家自然科学基金 11172283

详细信息
    作者简介:

    张群峰, 男, 博士, 讲师。主要研究方向:应用计算流体力学

    闫盼盼, 男, 博士研究生。主要研究方向:应用计算流体力学

    黎军, 男, 博士, 研究员。主要研究方向:飞行器设计

    通讯作者:

    张群峰, E-mail:zhangqunfeng@263.net

  • 中图分类号: V211.3

Comparison between external store separation and buried store separation of fighter

Funds: 

National Natural Science Foundation of China 11172283

More Information
  • 摘要:

    为了研究弹体外挂投放与内埋投放的区别,利用基于Menter SST湍流模式的改进延迟分离涡模拟(IDDES)方法以及重叠网格技术,分别对亚声速和超声速来流条件下,同一弹体外挂投放和内埋投放进行了数值模拟,得到了亚声速和超声速条件下外挂投放与内埋投放弹体的下落规律。通过对比分析表明:亚声速和超声速来流条件下,内埋投放由于受舱体内强非定常流场以及舱体唇口剪切层的影响,弹体受很大的抬头力矩,弹体姿态角变化较大,投放特性劣于外挂投放。进一步研究表明:在弹射时给弹体一定的低头角速度,使弹体以低头姿态穿越剪切层,则可以大幅度降低剪切层带来的不利影响,提高内埋投放弹体分离品质。

     

  • 图 1  贡献单元选取示意图

    Figure 1.  Schematic of donor cell selection

    图 2  弹体中心截面网格分布

    Figure 2.  Grid distribution on central plane of missile

    图 3  亚声速来流条件下弹体中心截面马赫数分布云图

    Figure 3.  Contours of Mach number distribution on central plane of missile for subsonic inflow

    图 4  超声速来流条件下弹体中心截面马赫数分布云图

    Figure 4.  Contours of Mach number distribution on central plane of missile for supersonic inflow

    图 5  亚声速来流条件下弹体竖直方向合力、速度和位移随时间变化曲线

    Figure 5.  Vertical force, velocity and displacement of missile versus time for subsonic inflow

    图 6  亚声速来流条件下弹体俯仰力矩、俯仰角速度和俯仰角随时间变化曲线

    Figure 6.  Pitch moments, pitch angular velocity and pitch angle of missile versus time for subsonic inflow

    图 7  亚声速来流条件下t=0.1 s外挂投放流场中心截面马赫数及弹体表面压力分布云图

    Figure 7.  Contours of Mach number distribution on flow field central plane and pressure distribution on missile surface for external store separation of subsonic inflow at t=0.1 s

    图 8  亚声速来流条件下t=0.1 s外挂投放弹体表面不同周向位置处压力系数分布

    Figure 8.  Pressure coefficient distribution at different circumferential positions on missile surface for external store seperation of subsonic infolw at t=0.1 s

    图 9  超声速来流条件下弹体竖直方向合力、速度和位移随时间变化曲线

    Figure 9.  Vertical force, velocity and displacement of missile versus time for supersonic inflow

    图 10  超声速来流条件下弹体俯仰力矩、俯仰角速度和俯仰角随时间变化曲线

    Figure 10.  Pitch moments, pitch angular velocity and pitch angle of missile versus time for supersonic inflow

    图 11  超声速来流条件下t=0.1 s外挂投放流场密度梯度等值面

    Figure 11.  Iso-surfaces of density gradient of external store separation for supersonic inflow at t=0.1 s

    图 12  超声速来流条件下t=0.1 s外挂投放弹体表面压力分布云图及不同周向位置处压力系数分布

    Figure 12.  Pressure distribution contours on missile surface and pressure coefficient distribution at different circumferential positions for extemal store seperation of supersonic inflow at t=0.1 s

    图 13  超声速来流条件下t=0.25 s外挂投放流场密度梯度等值面

    Figure 13.  Iso-surfaces of density gradient of external store separation for supersonic inflow at t=0.25 s

    图 14  超声速来流条件下t=0.25 s外挂投放弹体表面压力分布云图及不同周向位置处压力系数分布

    Figure 14.  Pressure distribution contours on missile surface and pressure coefficient distribution at different circumferential positions for external store seperation of supersonic inflow at t=0.25 s

    图 15  超声速来流条件下t=0.07 s时内埋投放流场中心截面马赫数及弹体表面压力分布云图

    Figure 15.  Contours of Mach number distribution on central plane and pressure distribution on missile surface for buried store seperation of supersonic inflow at t=0.07 s

    图 16  超声速来流条件下t=0.07 s内埋投放弹体表面不同周向位置处压力系数分布

    Figure 16.  Pressure coefficient distribution at different circumferential positions on missile surface for buried store seperation of supersonic inflow at t=0.07 s

    图 17  超声速来流条件下t=0.22 s时内埋投放流场中心截面马赫数及弹体表面压力分布云图

    Figure 17.  Contours of Mach number distribution on central plane and pressure distribution on missile surface for buried store seperation of supersonic inflow at t=0.22 s

    图 18  超声速来流条件下t=0.22 s内埋投放弹体表面不同周向位置处压力系数分布

    Figure 18.  Pressure coefficient distribution at different circumferential positions on missile surface for buried store seperation of supersonic inflow at t=0.22 s

    图 19  改进发射方式下弹体竖直方向速度、位移和俯仰角速度、俯仰角随时间变化曲线

    Figure 19.  Vertical velocity, displacement, pitch angular velocity and pitch angle of missile versus time for improved launch mode

    表  1  计算工况

    Table  1.   Calculation conditions

    工况 Ma 投放方式 弹射力A/N 弹射力B/N 弹射力合力/N 弹射力合力矩/(N·m)
    1 0.85 内埋 -10 679 -42 717 -53 396 12 174
    2 0.85 外挂 -10 679 -42 717 -53 396 12 174
    3 1.35 内埋 -10 679 -42 717 -53 396 12 174
    4 1.35 外挂 -10 679 -42 717 -53 396 12 174
    5 0.85 内埋 -42 717 -10 679 -53 396 -4 165
    6 1.35 外挂 -42 717 -10 679 -53 396 -4 165
    下载: 导出CSV

    表  2  投放前弹体受力对比

    Table  2.   Missile force comparison before launching

    来流条件 投放方式 竖直方向气动力合力/N 俯仰力矩/(N·m)
    亚声速 外挂 2 527 -3 393
    内埋 23 -149
    超声速 外挂 3 525 -7 698
    内埋 -169 267
    下载: 导出CSV
  • [1] 冯必鸣, 聂万胜, 车学科.超声速条件下内埋式武器分离特性的数值分析[J].飞机设计, 2009, 29(4):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ200904001.htm

    FENG B M, NIE W S, CHE X K.Simulation of the store separation from a cavity at supersonic speed[J].Aircraft Design, 2009, 29(4):1-5(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ200904001.htm
    [2] 冯必鸣, 聂万胜, 车学科.初始投放条件对内埋式导弹分离轨迹的影响[J].飞行力学, 2009, 27(4):62-65. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX200904017.htm

    FENG B M, NIE W S, CHE X K.Effect of initial conditions on separation trajectory of the internal missile[J].Flight Dynamics, 2009, 27(4):62-65(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX200904017.htm
    [3] 冯必鸣, 聂万胜, 车学科, 等.安装角度对内埋式导弹分离特性的影响[J].空气动力学学报, 2010, 28(6):672-675. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201006009.htm

    FENG B M, NIE W S, CHE X K, et al.Effect of fixing angle to separation characteristics of internal store[J].Acta Aerodynamica Sinica, 2010, 28(6):672-675(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201006009.htm
    [4] 杨俊, 李骞, 谢云恺, 等.超声速内埋武器分离数值研究[J].弹箭与制导学报, 2015, 35(4):171-174. http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201504043.htm

    YANG J, LI Q, XIE Y K, et al.Numerical studies on store separation from a weapon bay at supersonic speed[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(4):171-174(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201504043.htm
    [5] 吴继飞, 罗新福, 徐来武, 等.内埋武器分离特性及其改进方法研究[J].空气动力学学报, 2014, 32(6):814-819. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201406014.htm

    WU J F, LUO X F, XU L W, et al.Investigation on internal weapon separation characteristics and flow control methods[J].Acta Aerodynamica Sinica, 2014, 32(6):814-819(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201406014.htm
    [6] 吴继飞, 罗新福, 范召林.内埋式弹舱流场特性及武器分离特性改进措施[J].航空学报, 2009, 30(10):1840-1845. doi: 10.3321/j.issn:1000-6893.2009.10.008

    WU J F, LUO X F, FAN Z L.Flow control method to improve cavity flow and store separation characteristics[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1840-1845(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.10.008
    [7] 管德会, 蔡为民.扰流板对内埋导弹偏航姿态角的影响[J].航空学报, 2014, 35(4):942-947. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201404004.htm

    GUAN D H, CAI W M.Spoiler's effect on the yawing attitude angle of the missile in the bay[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(4):942-947(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201404004.htm
    [8] 朱收涛, 曹林平, 封普文, 等.平飞时内埋导弹弹射分离仿真与研究[J].电光与控制, 2012, 19(9):67-71. http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201209018.htm

    ZHU S T, CAO L P, FENG P W, et al.Simulation of missile separation from internal weapon bay[J].Electronics Optics & Control, 2012, 19(9):67-71(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201209018.htm
    [9] 唐上钦, 黄长强, 翁兴伟.考虑气动干扰的导弹内埋式发射弹道研究[J].弹箭与制导学报, 2013, 33(3):138-142. http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201303039.htm

    TANG S Q, HUANG C Q, WENG X W.The study on trajectory of missile separating from cavity with aerodynamic interference considered[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(3):138-142(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201303039.htm
    [10] BLAZEK J.Computational fulid dynamics principles and applications[M].London:Elsevier, 2005:16-18.
    [11] SPALART P R, JOU W, STRELETS M, et al.Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//1st AFOSR International Conference on DNS/LES.Columbus:Greyden Press, 1997:4-8.
    [12] SPALART P R, DECK S, SHUR M L, et al.A new version of detached-eddy simulation, resistant to ambiguous grid densities[J].Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195. doi: 10.1007/s00162-006-0015-0
    [13] SHUR M L, SPALART P R, STRELETS M K.A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J].International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [14] STRELETS M.Detached eddy simulation of massively separated flows[C]//39th Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2001:1-18.
    [15] GRITSKEVICH M.Development of DDES and IDDES formulations for the k-ω shear stress transport model[J].Flow, Turbulence and Combustion, 2012, 88(3):431-449. doi: 10.1007/s10494-011-9378-4
    [16] 朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社, 1998:173-174.

    ZHU Z Q.The application of computational fluid dynamics[M].Beijing:Beihang University Press, 1998:173-174(in Chinese).
    [17] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2006:197-217.

    YAN C.The computational fluid dynamics method and its application[M].Beijing:Beihang University Press, 2006:197-217 (in Chinese).
    [18] 田书玲, 伍贻兆, 夏健.基于非结构重叠网格的二维N-S方程求解与应用研究[J].空气动力学学报, 2008, 26(3):405-411. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200803024.htm

    TIAN S L, WU Y Z, XIA J.The solution and application of 2D N-S equation on overset unstructured grid[J].Acta Aerodynamica Sinica 2008, 26(3):405-411(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200803024.htm
    [19] VENKATAKRISHNAN V.On the convergence of limiters and convergence to steady state solutions:AIAA-1993-0880[R].Reston:AIAA, 1993.
    [20] 张群峰, 闫盼盼, 黎军.内埋式弹舱与弹体相互影响的精细模拟[J].兵工学报, 2016, 37(12):2366-2376. doi: 10.3969/j.issn.1000-1093.2016.12.024

    ZHANG Q F, YAN P P, LI J.Elaborate simulation of interaction effect between internal weapon bay and missile[J].Acta Armamentarii, 2016, 37(12):2366-2376(in Chinese). doi: 10.3969/j.issn.1000-1093.2016.12.024
    [21] HEIM E R.CFD wing/pylon/finned store mutual interference wind tunnel experiment[R].Tullahoma:Arnold Engineering Development Center, 1991.
    [22] 郑书娥, 廖志忠.空空导弹机弹分离安全性研究[J].四川兵工学报, 2015, 36(5):17-23. http://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201505005.htm

    ZHENG S E, LIAO Z Z.Study on air-to-air missile safety separation technology from craft[J].Journal of Sichuan Ordnance, 2015, 36(5):17-23(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201505005.htm
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  169
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-08
  • 录用日期:  2016-08-11
  • 网络出版日期:  2017-06-20

目录

    /

    返回文章
    返回
    常见问答