留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应引导长度的无人机航迹跟踪方法

李樾 陈清阳 侯中喜

李樾, 陈清阳, 侯中喜等 . 自适应引导长度的无人机航迹跟踪方法[J]. 北京航空航天大学学报, 2017, 43(7): 1481-1490. doi: 10.13700/j.bh.1001-5965.2016.0522
引用本文: 李樾, 陈清阳, 侯中喜等 . 自适应引导长度的无人机航迹跟踪方法[J]. 北京航空航天大学学报, 2017, 43(7): 1481-1490. doi: 10.13700/j.bh.1001-5965.2016.0522
LI Yue, CHEN Qingyang, HOU Zhongxiet al. Path following method with adaptive guidance length for unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1481-1490. doi: 10.13700/j.bh.1001-5965.2016.0522(in Chinese)
Citation: LI Yue, CHEN Qingyang, HOU Zhongxiet al. Path following method with adaptive guidance length for unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1481-1490. doi: 10.13700/j.bh.1001-5965.2016.0522(in Chinese)

自适应引导长度的无人机航迹跟踪方法

doi: 10.13700/j.bh.1001-5965.2016.0522
基金项目: 

中国博士后科学基金 2014M562652

详细信息
    作者简介:

    李樾  男, 博士研究生。主要研究方向:飞行器动力学与控制

    陈清阳  男, 博士, 讲师。主要研究方向:飞行器动力学与控制

    侯中喜  男, 博士, 教授, 博士生导师。主要研究方向:临近空间飞行器与技术

    通讯作者:

    陈清阳, E-mail:chy1982_008@nudt.edu.cn

  • 中图分类号: V249.122+.3

Path following method with adaptive guidance length for unmanned aerial vehicles

Funds: 

China Postdoctoral Science Foundation 2014M562652

More Information
  • 摘要:

    为保证无人机安全稳定的飞行,实现高精度的航迹跟踪,基于引导点的非线性制导算法,提出了一种引导长度自适应的航迹跟踪方法。首先建立无人机运动学模型,依此对非线性的制导算法进行理论分析与试验验证,建立无人机飞行速度与引导长度之间的关系。之后引出引导长度自适应的航迹跟踪方法,详细讨论方法的具体实现过程。最后通过各种情况下的仿真对比试验,验证所提出方法的有效性。仿真结果表明,所提出的方法能较精确地跟踪各种复杂航迹,同时在较大的初始偏差和航路点临时切换的情况下能稳定、快速地收敛到期望航迹,更好地满足各种实际飞行任务的需求。

     

  • 图 1  非线性制导方法几何示意图

    Figure 1.  Geometric drawing of nonlinear guidance method

    图 2  无人机滚转时重力与升力的平衡关系

    Figure 2.  Equilibrium relationship between weight and lift on rolling of UAV

    图 3  飞行试验用无人机

    Figure 3.  UAV for flight experiment

    图 4  不同引导长度下的航迹

    Figure 4.  Flight track with different guidance lengths

    图 5  稳定跟踪过程的侧偏距

    Figure 5.  Cross track error of stable tracking process

    图 6  不同引导长度下的滚转角变化

    Figure 6.  Variation of roll angle under different guidance lengths

    图 7  辨识结果与原始数据对比

    Figure 7.  Comparison between identification results and initial data

    图 8  滚转通道闭环传递函数的框图

    Figure 8.  Block diagram of roll channel closed-loop transfer function

    图 9  滚转通道闭环传递函数的伯德图

    Figure 9.  Bode diagram of roll channel closed-loop transfer function

    图 10  自适应引导长度的航迹跟踪方法原理图

    Figure 10.  Illustrative diagram of path following method with adaptive guidance length

    图 11  跟踪曲线y1时航迹示意图

    Figure 11.  Schematic of flight track when tracking curve y1

    图 12  跟踪曲线y1时滚转角示意图

    Figure 12.  Schematic of roll angle when tracking curve y1

    图 13  跟踪曲线y1时侧偏距示意图

    Figure 13.  Schematic of cross track error when tracking curve y1

    图 14  跟踪曲线y2时航迹示意图

    Figure 14.  Schematic of flight track when tracking curve y2

    图 15  跟踪曲线y2时滚转角示意图

    Figure 15.  Schematic of roll angle when tracking curve y2

    图 16  跟踪曲线y2时侧偏距示意图

    Figure 16.  Schematic of cross track error when tracking curve y2

    图 17  定引导长度与自适应引导长度航迹对比

    Figure 17.  Comparison of flight track between fixed guidance length and adaptive guidance length

    图 18  侧偏距对比

    Figure 18.  Comparison of cross track error

    图 19  滚转角对比

    Figure 19.  Comparison of roll angle

    图 20  引导长度变化对比

    Figure 20.  Comparison of guidance length variation

    表  1  稳定跟踪过程精度

    Table  1.   Accuracy of stable tracking process

    L/m 侧偏距的均方根/m
    50 1.148 2
    70 3.740 0
    90 4.674 5
    110 5.361 7
    130 8.245 1
    150 9.243 7
    下载: 导出CSV
  • [1] TAKESHI Y, KEISUKE E, HIROYUKI T.Advanced pure pursuit guidance via sliding mode approach for chase UAV[C]//AIAA Guidance, Navigation, and Control Conference.Reston: AIAA, 2009:6298-6304.
    [2] SUJIT P B, SRIKANTH S, JOAO B S.An evaluation of UAV path following algorithms[C]//European Control Conference.Piscataway, NJ:IEEE Press, 2013:3332-3337.
    [3] HECHT C.Homing guidance using angular acceleration of the line of sight[R].Reston: AIAA, 1976: 2701-2706.
    [4] SUN M, ZHU R, YANG X.UAV path generation path following and gimbal control[C]// IEEE International Conference of Networking, Sensing and Control.Piscataway, NJ:IEEE Press, 2008:870-873.
    [5] RHEE I, PARK S, RYOO C K.A tight path following algorithm of an UAS based on PID control[C]//SICE Annual Conference, IEEE.Piscataway, NJ:IEEE Press, 2010:1270-1273.
    [6] LI C Y, JING W X.Application of PID controller to 2d differential geometric guidance problem[J].Journal of Control Theory and Applications, 2007, 5(3):285-290. doi: 10.1007/s11768-006-6109-9
    [7] 吴国强. 无人机航迹跟踪控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2010: 24-48. http: //cdmd. cnki. com. cn/Article/CDMD-10217-1011019691. htm

    WU G Q.The study of UAV flight path tracking control method[D].Harbin:Harbin Engineering University, 2010:24-48(in Chinese). http: //cdmd. cnki. com. cn/Article/CDMD-10217-1011019691. htm
    [8] RYSDYK R.UAV path following for constant line-of-sight[C]//AIAA"Unmanned Unlimited" Systems Technologies & Operations Aerospace Land & Sea Conference.Reston: AIAA, 2003:6626-6636.
    [9] OTHARI M, POSTLETHWAITE L, GU D W.UAV path following in windy urban environments[J].Journal of Intelligent & Robotic Systens, 2014 74(3-4):1013-1028. doi: 10.1007%2Fs10846-013-9873-z.pdf
    [10] DALE A L, ERIC W F, WILLIAM J P.Lyapunov vector fields for autonomous UAV flight control[J].Journal of Guidance, Control, and Dynamics, 2008, 31(5):1220-1229. doi: 10.2514/1.34896
    [11] NELSON D R, BARBER D B, MCLAIN T W, et al.Vector field path following for miniature air vehicles[J].IEEE Transactions on Robotics, 2007, 23(3):519-529. doi: 10.1109/TRO.2007.898976
    [12] SANGHYUK P, JOHN D, JONATHAN P H.A new nonlinear guidance logic for trajectory tracking[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA, 2004:1-16.
    [13] SANGHYUK P, JOHN D, JONATHAN P H.Performance and Lyapunov stability of a nonlinear path-following guidance method[J].Journal of Guidance, Control, and Dynamics, 2007, 30(6):1718-1728. doi: 10.2514/1.28957
    [14] OSBOME J, RYSDYK R.Waypoint guidance for small UAVs in wind[C]//AIAA Infotech, Aerospace Conference, Arlington.Reston:AIAA, 2005:459-470.
    [15] MAO Y H, CHEN Q Y, HOU Z X, et al.An improved nonlinear guidance law for unmanned aerial vehicles path following[C]//Proceedings of the 34th Chinese Control Conference.Piscataway, NJ:IEEE Press, 2015:5271-5276.
    [16] 方振平, 陈万春, 张曙光.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社, 2005:20-32.

    FANG Z P, CHEN W C, ZHANG S G.Flight dynamics for aircraft[M].Beijing:Beihang University Press, 2005:20-32(in Chinese).
    [17] 董芳. 无人机航迹跟踪技术的研究[D]. 南京: 南京航空航天大学, 2010: 37-42. http: //d. wanfangdata. com. cn/Thesis/Y1811068

    DONG F.Research on path tracking technology of UAV[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:37-42(in Chinese). http: //d. wanfangdata. com. cn/Thesis/Y1811068
    [18] 吴森堂, 费玉华.飞行控制系统[M].北京:北京航空航天大学出版社, 2006:75-77, 94-100.

    WU S T, FEI Y H.Flight control system[M].Beijing: Beihang University Press, 2006:75-77, 94-100(in Chinese).
    [19] 关键. 低速无人机动态气动特性数值模拟及布局研究[D]. 长沙: 国防科学技术大学, 2013: 40-62. http: //cdmd. cnki. com. cn/Article/CDMD-90002-1015958195. htm

    GUAN J.The numerical research on transient aerodynamic performances and configurations of low speed UAVs[D].Changsha:National University of Defense Technology, 2013:40-62(in Chinese). http: //cdmd. cnki. com. cn/Article/CDMD-90002-1015958195. htm
    [20] 胡寿松.自动控制原理[M].北京:科学出版社, 2013:56-70.

    HU S S.Automatic control principle[M].Beijing: Science Press, 2013:56-70(in Chinese).
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  15
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-15
  • 录用日期:  2016-09-21
  • 刊出日期:  2017-07-20

目录

    /

    返回文章
    返回
    常见问答