留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑机动效率的多约束导引律设计

王超伦 薛林 闫晓勇

王超伦, 薛林, 闫晓勇等 . 考虑机动效率的多约束导引律设计[J]. 北京航空航天大学学报, 2017, 43(8): 1594-1601. doi: 10.13700/j.bh.1001-5965.2016.0567
引用本文: 王超伦, 薛林, 闫晓勇等 . 考虑机动效率的多约束导引律设计[J]. 北京航空航天大学学报, 2017, 43(8): 1594-1601. doi: 10.13700/j.bh.1001-5965.2016.0567
WANG Chaolun, XUE Lin, YAN Xiaoyonget al. Design of guidance law with multiple constraints considering maneuvering efficiency[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1594-1601. doi: 10.13700/j.bh.1001-5965.2016.0567(in Chinese)
Citation: WANG Chaolun, XUE Lin, YAN Xiaoyonget al. Design of guidance law with multiple constraints considering maneuvering efficiency[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1594-1601. doi: 10.13700/j.bh.1001-5965.2016.0567(in Chinese)

考虑机动效率的多约束导引律设计

doi: 10.13700/j.bh.1001-5965.2016.0567
基金项目: 

国家自然科学基金 11202023

详细信息
    作者简介:

    王超伦   男, 博士研究生。主要研究方向:弹道设计、制导律设计

    薛林   男, 研究员, 博士生导师。主要研究方向:导弹总体

    通讯作者:

    薛林, E-mail:majie283@sina.com

  • 中图分类号: TJ765

Design of guidance law with multiple constraints considering maneuvering efficiency

Funds: 

National Natural Science Foundation of China 11202023

More Information
  • 摘要:

    针对考虑交会角约束的导引律在可用过载不足时将导致大的交会角误差问题,推导一种考虑时变过载约束的制导形式,而该导引律在实现较大机动的同时会带来较大能量损失,进而提出一种考虑导弹机动效率的多约束导引律。首先,应用最优二次型原理推导出一种时变控制项权系数的闭环制导形式;其次,将导弹机动时刻阻力系数引入时变权系数,并通过迭代分别确定可用过载与机动效率约束边界;最后,将时变过载约束表示成剩余时间的函数,代入制导指令,并进行弹道仿真。结果表明:推导的2种导引律均能较好地实现末端弹道成型要求,考虑机动效率的制导指令分配更为合理,并有效降低了拦截末端速度损耗,提高了制导精度与毁伤效果;且考虑机动效率的导引律中时变权系数无须配平求解,在保证精度的同时极大提高了迭代速度。

     

  • 图 1  弹目相对运动关系示意图[3]

    Figure 1.  Schematic diagram of missile-target relative movement geometry[3]

    图 2  可用过载拟合曲线与实际可用过载曲线对比

    Figure 2.  Contrast between available overload fitted curve and practical available overload curve

    图 3  常规防空导弹升阻比曲线

    Figure 3.  Common air-defense missile's lift-drag ratio curves

    图 4  常规防空导弹Cy/Cx(max)Ma变化

    Figure 4.  Variation of common air-defense missile Cy/Cx(max) with Ma

    图 5  导弹机动效率随迭代次数变化

    Figure 5.  Variation of missile maneuvering efficiency with iteration times

    图 6  性能约束边界与剩余时间关系

    Figure 6.  Relationship between performance constrained boundary and time-to-go

    图 7  3种导引律末制导弹道对比(匀速目标)

    Figure 7.  Three guidance laws' terminal trajectory contrast(constant target)

    图 8  3种导引律弹目交会角对比(匀速目标)

    Figure 8.  Three guidance laws' missile-target intercept angle contrast(constant target)

    图 9  3种导引律指令加速度对比(匀速目标)

    Figure 9.  Three guidance laws' command acceleration contrast (constant target)

    图 10  3种导引律末制导弹道对比(机动目标)

    Figure 10.  Three guidance laws' terminal trajectory contrast (manevering target)

    图 11  3种导引律指令加速度对比(机动目标)

    Figure 11.  Three guidance laws' command acceleration contrast (manevering target)

    表  1  不同导引律仿真结果对比(匀速目标)

    Table  1.   Different guidance laws' simulation results contrast (constant target)

    导引律脱靶量/m末端速度/(m·s-1)末端交会角/(°)拦截时间/s交会角误差/(°)
    交会角约束5.75455.284.2913.633.29
    交会角/可用过载约束0.43514.580.3113.38-0.69
    交会角/机动效率约束0.51519.481.0513.290.05
    下载: 导出CSV

    表  2  不同导引律仿真结果对比(机动目标)

    Table  2.   Different guidance laws' simulation results contrast (manevering target)

    导引律脱靶量/m末端速度/(m·s-1)末端交会角/(°)拦截时间/s交会角误差/(°)
    交会角约束1.58570.2-1.0012.30-1.00
    交会角/可用过载约束0.14569.5-0.6612.29-0.66
    交会角/机动效率约束0.22571.1-0.6012.29-0.60
    下载: 导出CSV
  • [1] 斯维特洛夫Β Γ, 戈卢别夫И C. 防空导弹设计[M]. 《防空导弹设计》编译委员会, 译. 北京: 中国宇航出版社, 2004: 111-116.

    SVATROV Β Γ, GRUBIEF И C.Air-defense missile design[M].Air-defense Missile Design Compliation Committee, translated.Beijing:Chinese Space Press, 2004:111-116(in Chinese).
    [2] RYOO C K, CHO H, TAHK M J.Time-to-go weighted optimal guidance with impact angle constraints[J].IEEE Transactions on Control System Technology, 2006, 14(3):483-492. doi: 10.1109/TCST.2006.872525
    [3] SHAFERMAN V, SHIMA T.Linear quadratic guidance laws for imposing a terminal intercept angle[J].Journal of Guidance, Control, and Dynamics, 2008, 31(5):39-48. http://adsabs.harvard.edu/abs/2008JGCD...31.1400S
    [4] 张友安, 马培蓓.带有攻击角度和攻击时间控制的三维制导[J].航空学报, 2008, 29(4):1020-1026. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200804042.htm

    ZHANG Y A, MA P B.Three-dimensional guidance law with impact angle and impact time constraints[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(4):1020-1026(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200804042.htm
    [5] CLOUTIER J R.All-aspect acceleration limited homing guidance[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA, 2005, 8:9-11.
    [6] HEXNER G, SHIMA T.Stochastic optimal control guidancelaw with bounded acceleration[J].IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1):71-78. doi: 10.1109/TAES.2007.357155
    [7] 董晨, 晁涛, 王松艳, 等.带落角约束与控制约束的纵向制导律[J].固体火箭技术, 2014, 37(3):285-290. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201403002.htm

    DONG C, CHAO T, WANG S Y, et al.Longitudinal guidance law with constraints on impact angle and control[J].Journal of Solid Rocket Technology, 2014, 37(3):285-290(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201403002.htm
    [8] SONG T L, SHIN S J, CHO H.Impact angle control for planer engagements[J].IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4):1439-1444. doi: 10.1109/7.805460
    [9] RYOO C K, CHO H, TAHK M J.Closed-form solutions of optimal guidance with terminal impact angle constraint[C]//Proceedings of 2003 IEEE Conference on Control Application.Piscataway, NJ:IEEE Press, 2003:504-509.
    [10] 王辉, 林德福, 崔晓曦.一类扩展的弹道成型制导律[J].北京理工大学学报, 2014, 34(6):597-603. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201406010.htm

    WANG H, LIN D F, CUI X X.Extended trajectory shaping guidance laws[J].Transactions of Beijing Institute of Technology, 2014, 34(6):597-603(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201406010.htm
    [11] 王丽英, 张友安, 黄诘.带约束的末制导率与伪谱法轨迹优化[M].北京:国防工业出版社, 2015:92-96.

    WANG L Y, ZHANG Y A, HUANG J.Guidance law under multiple constrained and GPOPS trajectory optimization[M].Beijing:Nationnal Defense Industry Press, 2015:92-96(in Chinese).
    [12] 王青, 陈宇, 张颖昕, 等.最优控制——理论、方法与应用[M].北京:高等教育出版社, 2010:65-71.

    WANG Q, CHEN Y, ZHANG Y X, et al.Optimal control theory, mehod and application[M].Beijing:Higher Education Press, 2010:65-71(in Chinese).
    [13] ZARCHAN P.Tactical and strategic missile guidance, progress in astronautics and aeronautics[M].Reston:AIAA, 2003.
    [14] 钱杏芳, 林瑞雄.导弹飞行力学[M].3版.北京:北京理工大学出版社, 2008:62-63.

    QIAN X F, LIN R X.Missile flight dynamics[M].3rd ed.Beijing:Beijing Institute of Technology Press, 2008:62-63(in Chinese).
    [15] 孙未蒙. 空地制导武器多约束条件下的制导率设计[D]. 长沙: 国防科学技术大学, 2008: 8-13. http://cdmd.cnki.com.cn/Article/CDMD-90002-2010164860.htm

    SUN W M.Research on guidance law design with terminal impact angle constraints in air-to-surface guided weapon[D].Changsha:National University of Defense Technology, 2008:8-13(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90002-2010164860.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  904
  • HTML全文浏览量:  45
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-05
  • 录用日期:  2016-08-10
  • 网络出版日期:  2017-08-20

目录

    /

    返回文章
    返回
    常见问答