留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三波长数字相位解调法解调误差及影响因素

赵文涛 宋凝芳 宋镜明 吴蓉

赵文涛, 宋凝芳, 宋镜明, 等 . 三波长数字相位解调法解调误差及影响因素[J]. 北京航空航天大学学报, 2017, 43(8): 1654-1661. doi: 10.13700/j.bh.1001-5965.2016.0568
引用本文: 赵文涛, 宋凝芳, 宋镜明, 等 . 三波长数字相位解调法解调误差及影响因素[J]. 北京航空航天大学学报, 2017, 43(8): 1654-1661. doi: 10.13700/j.bh.1001-5965.2016.0568
ZHAO Wentao, SONG Ningfang, SONG Jingming, et al. Demodulation error and influencing factor of three-wavelength digital phase demodulation method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1654-1661. doi: 10.13700/j.bh.1001-5965.2016.0568(in Chinese)
Citation: ZHAO Wentao, SONG Ningfang, SONG Jingming, et al. Demodulation error and influencing factor of three-wavelength digital phase demodulation method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1654-1661. doi: 10.13700/j.bh.1001-5965.2016.0568(in Chinese)

三波长数字相位解调法解调误差及影响因素

doi: 10.13700/j.bh.1001-5965.2016.0568
基金项目: 

国家自然科学基金 61575013

详细信息
    作者简介:

    赵文涛  男, 硕士研究生。主要研究方向:先进光纤传感

    宋凝芳  女, 博士, 教授, 博士生导师。主要研究方向:先进光纤传感和空间光电技术

    通讯作者:

    宋镜明, E-mail: Songnf@buaa.edu.cn

  • 中图分类号: V241.9;TN253

Demodulation error and influencing factor of three-wavelength digital phase demodulation method

Funds: 

National Natural Science Foundation of China 61575013

More Information
  • 摘要:

    介绍了光纤法布里-珀罗(F-P)传感器的传统解调方法,系统地推导了针对非本征法布里-珀罗干涉型(EFPI)传感器解调的三波长数字相位解调法的解调原理,仿真和实验分析了三波长数字相位解调法的解调误差。仿真分析结果表明,相位偏离正交关系是限制解调的最主要因素,要保证解调误差在15 nm以内,腔长变化应小于在正交腔长处2 μm的范围。采用3个独立的激光光源进行实验,实验结果表明,在正交腔长附近1 μm范围内变化,解调腔长误差小于12 nm,重复性误差小于10 nm,解调具有良好的稳定性。

     

  • 图 1  双波长正交法原理图[17]

    Figure 1.  Schematic of two-wavelength orthogonal method[17]

    图 2  三波长数字相位解调系统结构简图

    Figure 2.  Simplified structure of three-wavelength digital phase demodulation system

    图 3  相位变化与腔长关系

    Figure 3.  Relationship between phase variation and cavity length

    图 4  F-P干涉仪的原理

    Figure 4.  Principle of F-P interferometer

    图 5  实际与理论反射光强对比

    Figure 5.  Comparison between actual reflected light intensity and theoretical reflected light intensity

    图 6  实际与理论解调相位的对比

    Figure 6.  Comparison between actual demodulated phase and theoretical demodulated phase

    图 7  双光束近似引起的解调误差

    Figure 7.  Demodulation error caused by approximation of two beam interference

    图 8  对比度随腔长变化量的关系

    Figure 8.  Variation of fringe visibility factors with cavity length

    图 9  忽略对比度差异引起的解调误差

    Figure 9.  Demodulation error caused by ignoring differences of fringe visibility factors

    图 10  相位的正交关系

    Figure 10.  Orthogonal relationship of phase

    图 11  偏离相位正交关系

    Figure 11.  Deviation from orthogonal relationship of phase

    图 12  偏离相位正交关系引起的解调误差

    Figure 12.  Demodulation error caused by deviation from orthogonal relationship of phase

    图 13  标定、解调与仿真对比关系图

    Figure 13.  Comparison of calibration, demodulation and simulation

    表  1  标定腔长与解调腔长对比

    Table  1.   Comparison between calibration cavity length and demodulation cavity length

    压力/MPa标定腔长/μm解调腔长/μm误差/nm
    2100.614100.6228
    4100.418100.42911
    6100.231100.24312
    8100.043100.0529
    1099.85999.8656
    下载: 导出CSV

    表  2  解调的重复性误差

    Table  2.   Repeatability error of demodulation value

    初始压力/MPa解调均值/μm误差/nm
    2100.8000
    4100.7946
    6100.8099
    8100.7919
    10100.7991
    下载: 导出CSV
  • [1] SEN M B, BHATIA V, MURPHY K A.Recent advances in the fiber extrinsic Fabry-Perot interferometric strain sensor development[C]//Lasers and Electro-Optics Society Meeting, 1994.Piscataway, NJ:IEEE Press, 1994, 2:253-254.
    [2] 张磊, 于清旭.光纤F-P腔与FBG复用传感器精确解调方法研究[J].光电子·激光, 2009, 20(8):1008-1011. http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200908007.htm

    ZHANG L, YU Q X.An improved demodulation method for F-P and FBG multiplexing system[J].Journal of Optoelectronics Laser, 2009, 20(8):1008-1011(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200908007.htm
    [3] 李春成, 王鸣, 夏巍, 等.基于F-P腔强度解调的微位移传感器[J].光学学报, 2014, 34(6):0628001_1-0628001_6. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201406043.htm

    LI C C, WANG M, XIA W, et al.A novel Fabry-Perot micro-displacement sensor based on intensity demodulation method[J].Acta Optica Sinica, 2014, 34(6):0628001_1-0628001_6(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201406043.htm
    [4] GANDER M J, MACPHERSON W N, BARTON J S, et al.Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications[J].IEEE Sensors Journal, 2003, 3(1):102-107. doi: 10.1109/JSEN.2003.810099
    [5] 李坤, 文泓桥, 李慧.光纤法布里-珀罗结构的微型应变传感器的研制[J].光学学报, 2009, 9(12):3282-3285. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200912008.htm

    LI K, WEN H Q, LI H.A study on miniature interferometer strain sensor based on EFPI[J].Acta Optica Sinica, 2009, 9(12):3282-3285(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200912008.htm
    [6] SHAN N, SHI Y K, LIU X.Detecting crack of aircraft engine blade based on optical fiber F-P sensor[J].Nodestructive Testing, 2009, 31(3):206-207. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSJC200903013.htm
    [7] BHATIA V, MURPHY A, CLAUS R O, et al.Recent developments in optical-fiber-based extrinsic Fabry-Perot interferometric strain sensing technology[J].Smart Materials and Structures, 1995, 24(4):246-251.
    [8] YU Q X, ZHOU X L.Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer[J].Photonic Sensors, 2011, 1(1):72-83. doi: 10.1007/s13320-010-0017-9
    [9] MA C, DONG B, GONG J, et al.Decoding the spectra of low-finesse extrinsic optical fiber Fabry-Perot interferometers[J].Optics Express, 2011, 19(24):23723-23742. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-24-23727#Abstract
    [10] MACPHERSON W N, KIDD S R, BARTON J S, et al.Phase demodulation in optical fiber Fabry-Perot sensors with inexact phase steps[J].IEEE Proc-Optoelectron, 1997, 144(3):130-133. doi: 10.1049/ip-opt:19971092
    [11] JIANG Y.Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors[J].IEEE Photonics Technology Letters, 2008, 20(2):75-77. doi: 10.1109/LPT.2007.912567
    [12] ZHANG X M, LIU Y, BAE H, et al.Phase demodulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors[J].Optics Express, 2009, 17(26):23965-23974. doi: 10.1364/OE.17.023965
    [13] SCHMIDT M, FURSTENAU N.Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation[J].Optics Letters, 1999, 24(9):599-601. doi: 10.1364/OL.24.000599
    [14] SCHMIDT M, WERTHER B, FURSTENAU N.Fiber-optic extrinsic Fabry-Perot interferometer strain sensors with < 50pm displacement resolution using three-wavelength digital phase demodulation[J].Optics Express, 2001, 8(8):475-480. doi: 10.1364/OE.8.000475
    [15] 张佩. 基于光纤F-P传感器的动态解调算法的研究[D]. 武汉: 武汉理工大学, 2013. http://d.wanfangdata.com.cn/Thesis/Y2504382

    ZHANG P.Study on methods of the dynamic demodulation for optical fiber Fabry-Perort sensors[D].Wuhan:Wuhan University of Technology, 2013(in Chinese). http://d.wanfangdata.com.cn/Thesis/Y2504382
    [16] SONG N F, CUI R Q, YANG Y J, et al.Fiber-optic extrinsic Fabry-Perot interferometer sensors with multi-wavelength intensity demodulation[C]//Mechanical Engineering, Materials Science and Civil Engineering Ⅱ.Zurich-Durnten:Trans Tech Publications Ltd., 2013:630-635.
    [17] MURPHY K, GUNTHER M, VENGSARKER A, et al.Quadrature phase-shifted extrinsic Fabry-Perot optical fiber sensors[J].Optics Letters, 1991, 16(4):273-275. doi: 10.1364/OL.16.000273
    [18] 郁道银, 谈恒英.工程光学[M].2版.北京:机械工业出版社, 2011:310-313.

    YU D Y, TAN H Y.Engineering optics[M].2nd ed.Beijing:China Machine Press, 2011:310-313(in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  848
  • HTML全文浏览量:  128
  • PDF下载量:  629
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-04
  • 录用日期:  2016-08-10
  • 网络出版日期:  2017-08-20

目录

    /

    返回文章
    返回
    常见问答