留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载对地观测飞行轨迹设计与对比分析

宫晓琳 张帅

宫晓琳, 张帅. 机载对地观测飞行轨迹设计与对比分析[J]. 北京航空航天大学学报, 2017, 43(8): 1541-1549. doi: 10.13700/j.bh.1001-5965.2016.0580
引用本文: 宫晓琳, 张帅. 机载对地观测飞行轨迹设计与对比分析[J]. 北京航空航天大学学报, 2017, 43(8): 1541-1549. doi: 10.13700/j.bh.1001-5965.2016.0580
GONG Xiaolin, ZHANG Shuai. Design and comparative analysis of flight trajectory of airborne earth observation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1541-1549. doi: 10.13700/j.bh.1001-5965.2016.0580(in Chinese)
Citation: GONG Xiaolin, ZHANG Shuai. Design and comparative analysis of flight trajectory of airborne earth observation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1541-1549. doi: 10.13700/j.bh.1001-5965.2016.0580(in Chinese)

机载对地观测飞行轨迹设计与对比分析

doi: 10.13700/j.bh.1001-5965.2016.0580
基金项目: 

国家自然科学基金 61473020

国家自然科学基金 61004129

国家自然科学基金 61233005

国家自然科学基金 61121003

遥感青年科技人才创新资助计划(第一期) 

详细信息
    作者简介:

    宫晓琳  女,博士,讲师,硕士生导师。主要研究方向:惯性导航与组合导航、滤波技术与信息融合等。

    张帅  男,硕士研究生。主要研究方向:组合导航。

    通讯作者:

    宫晓琳,E-mail: gongxiaolin@buaa.edu.cn

  • 中图分类号: V249.32

Design and comparative analysis of flight trajectory of airborne earth observation

Funds: 

National Natural Science Foundation of China 61473020

National Natural Science Foundation of China 61004129

National Natural Science Foundation of China 61233005

National Natural Science Foundation of China 61121003

Remote Sensing of Youth Science and Technology Talent Innovation Funding Plan(Phase I) 

More Information
  • 摘要:

    针对机载对地观测载机长时间匀速直线飞行时分布式位置姿态测量系统(POS)姿态误差随时间积累的问题,基于载机有效机动能够提高分布式POS系统可观测度进而提高系统估计精度的思想,设计并对比多种机动方式下分布式POS系统的估计精度,并对机动后分布式POS系统进入测区前的滤波估计稳定时间、直线飞行成像时长和全球定位系统(GPS)基线长度进行了测试。仿真结果表明,设计的飞行轨迹能够提高成像段运动参数的测量精度,可为机载对地观测最优飞行轨迹的选择和设计提供理论指导。

     

  • 图 1  机载对地观测飞行轨迹基本方案

    Figure 1.  Basic scheme of airborne earth observation flight trajectory

    图 2  5种运动方式的飞行轨迹

    Figure 2.  Flight trajectory of five modes of motion

    图 3  无机动、S型、O型、8字型和曲线爬升机动情况下姿态误差

    Figure 3.  Attitude error of no maneuver、S type maneuver、O type maneuver、8 type maneuver and curve climb maneuver

    表  1  惯性器件性能参数

    Table  1.   Performance parameters of inertial sensors

    器件水平陀螺仪漂移/((°)·h-1)加速度计偏置/μg
    高精度0.0110
    中精度0.0550
    低精度0.1100
    下载: 导出CSV

    表  2  飞行轨迹影响因素与参数选取

    Table  2.   Influencing factors and parameter selection of flight trajectory

    子IMU惯性器件水平测区前机动方式测区前飞行时长/s直线段飞行时长/sGPS基线长度/km
    高精度无机动010020
    中精度S型10020040
    低精度O型20040060
    8字型300
    曲线爬升400
    下载: 导出CSV

    表  3  5种运动方式的轨迹参数

    Table  3.   Trajectory parameters of five modes of motion

    运动方式时间/s运动状态
    10~400匀速直线
    400~600顺时针转180°
    600~1 000匀速直线
    20~100匀速直线
    100~800S型机动
    800~1 200匀速直线
    1 200~1 400顺时针转180°
    1 400~1 800匀速直线
    30~100匀速直线
    100~500O型机动
    500~900匀速直线
    900~1 100顺时针转180°
    1 100~1 500匀速直线
    40~100匀速直线
    100~1 0008字型机动
    1 000~1 400匀速直线
    1 400~1 600顺时针转180°
    1 600~2 000匀速直线
    50~500曲线爬升
    500~900匀速直线
    900~1 100顺时针转180°
    1 100~1 500匀速直线
    下载: 导出CSV

    表  4  不同机动方式下成像段姿态误差统计(STD)

    Table  4.   Statistics of imaging segment attitude error under different maneuvering modes (STD)

    机动方式航向角估计误差/(°)俯仰角估计误差/(°)横滚角估计误差/(°)
    无机动0.248 30.037 60.040 4
    S型0.012 00.008 20.004 1
    O型0.020 90.008 20.004 1
    8字型0.011 60.008 40.004 0
    曲线爬升0.152 10.009 20.003 8
    下载: 导出CSV

    表  5  不同T1下成像段姿态误差统计(STD)

    Table  5.   Statistics of imaging segment attitude error with different T1 (STD)

    T1/s航向角估计误差/(°)俯仰角估计误差/(°)横滚角估计误差/(°)
    00.011 60.008 40.004 0
    1000.011 60.008 30.004 0
    2000.009 10.008 50.003 8
    3000.009 30.008 20.003 8
    4000.009 90.008 10.003 8
    5000.010 20.008 20. 0038
    下载: 导出CSV

    表  6  不同T2下成像段姿态误差统计(STD)

    Table  6.   Statistics of imaging segment attitude error with different T2 (STD)

    T2/s航向角估计误差/(°)俯仰角估计误差/(°)横滚角估计误差/(°)
    1000.008 30.007 60.003 8
    2000.008 60.007 70.003 9
    4000.009 10.008 50.003 8
    下载: 导出CSV

    表  7  不同GPS基线长度下GPS定位精度

    Table  7.   GPS positioning accuracy under different baseline lengths of GPS

    GPS基线长度/km水平定位精度/m高度定位精度/m
    200.10.2
    400.51
    6012
    下载: 导出CSV

    表  8  不同GPS基线长度下成像段子系统运动参数误差统计(STD)

    Table  8.   Statistics of motion parameter error of imaging segment subsystem under different baseline lengths of GPS (STD)

    运动参数GPS基线长度/km
    204060
    航向角/(°)0.010 10.009 80.009 8
    俯仰角/(°)0.008 00.008 00.008 1
    横滚角/(°)0.003 70.003 80.003 8
    东向速度/(m·s-1)0.013 70.016 20.018 1
    北向速度/(m·s-1)0.016 20.017 10.018 9
    天向速度/(m·s-1)0.019 40.019 40.020 1
    纬度/m0.205 70.244 50.246 5
    经度/m0.168 80.230 80.278 2
    高度/m0.494 20.484 90. 519 2
    基线长度/m0.218 00.597 21.275 7
    下载: 导出CSV
  • [1] ZUFFADA C,LI Z,NGHIEM S V,et al.The rise of GNSS reflectometry for Earth remote sensing[C]//Proceedings of IEEE Geoscience and Remote Sensing Symposium.Piscataway,NJ:IEEE Press,2015.
    [2] 韦立登,向茂生,吴一戎. POS数据在机载干涉SAR运动补偿中的应用[J].遥感技术与应用,2007,22(2):188-194. doi: 10.11873/j.issn.1004-0323.2007.2.188

    WEI L D,XIANG M S,WU Y R.The application of POS data in airborne interferometric SAR imaging processing[J].Remote Sensing Technology and Application,2007,22(2):188-194(in Chinese). doi: 10.11873/j.issn.1004-0323.2007.2.188
    [3] LI S S,ZHONG M Y,QIN J.The internal model control design of three-axis inertially stabilized platform for airborne remote sensing[C]//Proceedings of IEEE International Symposium on Instrumentation and Control Technology.Piscataway,NJ:IEEE Press,2012:1-9.
    [4] GONG X L,ZHANG R,FANG J C.Application of unscented R-T-S smoothing on INS/GPS integration system post processing for airborn earth observation[J].Measurement,2013,46(3):1074-1083. doi: 10.1016/j.measurement.2012.11.028
    [5] KIM T J.Motion measurement for high-accuracy real-time airborne SAR[C]//Proceedings of SPIE-The International Society for Optical Engineering.Bellingham,WA:SPIE,2004:36-44.
    [6] GROVES P D.Principles of GNSS,inertial,and multisensor integrated navigation systems[M].London:Artech House,2013.
    [7] FANG J C,CHEN L,YAO J F.An accurate gravity compensation method for high-precision airborne POS[J].IEEE Transactions on Geoscience & Remote Sensing,2014,52(8):4564-4573. doi: 10.1088/0957-0233/27/9/095103
    [8] FANG J C,GONG X L.Predictive iterated Kalman filter for INS/GPS integration and its application to SAR motion compensation[J].IEEE Transactions on Instrumentation & Measurement,2010,59(4):909-915. doi: 10.1007/s12555-013-0048-2
    [9] CHATTARAJ S,MUKHERJEE A,CHAUDHURI S K.Transfer alignment problem:Algorithms and design issues[J].Gyroscopy and Navigation,2013,4(3):130-146. doi: 10.1134/S2075108713030036
    [10] 李四海,王珏,刘镇波,等.快速传递对准中机翼弹性变形估计方法比较[J].中国惯性技术学报,2014,22(1):38-44. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201401009.htm

    LI S H,WANG J,LIU Z B,et al.Comparison of wing distortion estimation methods in transfer alignment[J].Journal of Chinese Inertial Technology,2014,22(1):38-44(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201401009.htm
    [11] GROVES P D.Optimising the transfer alignment of weapon INS[J].Journal of Pediatric Psychology,2003,56(2):323-335. doi: 10.1007/978-3-319-22879-2_9
    [12] 王新龙,申亮亮,马闪.摇摆基座SINS快速精确传递对准方法[J].北京航空航天大学学报,2009,35(6):728-731. http://bhxb.buaa.edu.cn/CN/abstract/abstract8819.shtml

    WANG X L,SHEN L L,MA S.Transfer alignment of strapdown inertial navigation system on rolling bases[J].Journal of Beijing University of Aeronautics and Astronautics,2009,35(6):728-731(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8819.shtml
    [13] Technical reference manual IPAS10[EB/OL].[2016-07-01].http://www.leica.com.
    [14] 万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1998:152-155.

    WAN D J,FANG J C.Initial alignment of inertial navigation[M].Nanjing:Publishing House of Southeast University,1998:152-155(in Chinese).
    [15] 姜军,杨亚非.SINS/GPS组合导航系统初始对准的可观测度分析[J].哈尔滨工业大学学报,2007,39(7):1025-1027. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200707004.htm

    JIANG J,YANG Y F.The analysis on the degree of observability to initial alignment of SINS/GPS integrated navigation system[J].Journal of Harbin Institute of Technology,2007,39(7):1025-1027(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200707004.htm
    [16] 宫晓琳,房建成.一种机载遥感成像用分布式POS传递对准方法[J].北京航空航天大学学报,2012,38(4):491-496. http://bhxb.buaa.edu.cn/CN/abstract/abstract12257.shtml

    GONG X L,FANG J C.Method of transfer alignment of distributed POS for airborne remote imaging[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(4):491-496(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12257.shtml
    [17] AKCA T,DEMIREKLER M.An adaptive unscented Kalman filter for tightly coupled INS/GPS integration[C]//IEEE Position Location & Navigation Symposium.Piscataway,NJ:IEEE Press,2012:389-395.
    [18] ZHOU N X,WANG S,DENG Z L.Comparison of three transfer alignment methods in marine missile SINS[C]//Proceeding of the 25th Chinese Control Conference.Piscataway,NJ:IEEE Press,2006:27-31.
    [19] 李端昌,钟麦英,郭丁飞.分布式POS传递对准中的误差检测与补偿[C]//第25届中国控制与决策会议论文集.沈阳:东北大学出版社,2013.

    LI D C,ZHONG M Y,GUO D F.Error detection and compensation in transfer alignment for the distributed POS[C]//Proceeding of the 25th Chinese Control and Decision Conference.Shenyang:Northeasten University Press,2013.
    [20] JONES D,ROBERTS C,TARRANT D,et al.Transfer alignment design and evaluation environment[C]//Proceeding of the IEEE Regional Conference on Aerospace Control Systems.Piscataway,NJ:IEEE Press,1993:753-757.
    [21] 吴北平.GPS网络RTK定位原理与数学模型研究[D].武汉:中国地质大学,2003.

    WU B P.Principle and mathematical model research for GPS network RTK[D].Wuhan:China University of Geosciences,2003.
  • 加载中
图(3) / 表(8)
计量
  • 文章访问数:  729
  • HTML全文浏览量:  70
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-07
  • 录用日期:  2016-10-14
  • 网络出版日期:  2017-08-20

目录

    /

    返回文章
    返回
    常见问答