Influence of continuous trailing-edge variable camber wing on aerodynamic characteristics of airliner
-
摘要:
后缘连续变弯度机翼在提高民用客机气动特性方面有较大的潜力,近年来被广泛关注。基于建立的全局优化设计系统,研究了机翼后缘连续变弯度对宽体客机翼身组合体气动特性的影响。首先,采用自由型面变形(FFD)技术建立了后缘连续变弯度的参数化方法。然后,采用RANS方程作为流场评估方法,针对翼身组合体构型设计点附近升力系数开展了机翼后缘连续变弯度气动减阻优化设计。最后,探索了仅外翼段后缘连续变弯度和内外翼后缘均连续变弯度优化设计结果的异同。优化结果表明,升力系数小于设计升力系数时,在只考虑外翼段后缘连续变弯度的设计中,不易实现激波阻力和诱导阻力同时降低,考虑内翼段后缘连续变弯度后,减阻量较前者更为明显;升力系数大于设计升力系数时,外翼段和内外翼的后缘偏转均可实现诱导阻力和激波阻力的同时降低,且减阻量相差不大。
Abstract:The continuous trailing-edge variable camber wing has a potential in improving the aerodynamic characteristics of the airliner, and is widely concerned recently. Based on the optimization design system constructed in this paper, the influence of continuous trailing-edge variable camber wing on the aerodynamic characteristics of the airliner wing-body configuration is presented. First, the free form deformation (FFD) technique is used to accomplish the parameterization of the continuous trailing-edge variable camber wing. Then, based on the RANS equation solver, the trailing-edge variable camber wing optimizations are carried out to reduce aerodynamic drag of the wing-body configuration around the design lift coefficients. Finally, the difference of the optimization design results by considering the trailing-edge deflection of the outboard wing and the whole wing is explored. The optimization results show that when the lift coefficient is lower than the design lift coefficient and only the deflection of outboard wing trailing-edge is considered, the favorable deflection direction to reduce the induced drag and wave drag is opposite, and it is difficult to reduce them simultaneously; when the deflection of inboard wing is also considered, the drag reduction quantity is much larger than that of the former optimization; when the lift coefficient exceeds the design lift coefficient, the trailing-edge deflection of both the outboard wing and the whole wing can reduce the wave drag and induced drag simultaneously, and their drag reduction quantity is almost the same.
-
表 1 优化前后气动特性对比
Table 1. Comparison of aerodynamic performance before and after optimization
构型 CL=0.45 CL=0.55 α/(°) CD α/(°) CD Original 1.12 0.018 84 1.71 0.023 03 Optimized_1 1.25 0.018 63 1.57 0.022 81 Optimized_2 1.47 0.018 57 1.59 0.022 78 -
[1] RENEAUX J.Overview on drag reduction technologies for civil transport aircraft[C]//European Congress on Computational Methods in Applied Sciences and Engineering.Jyväskylä:University of Jyväskylä, 2004:7-24. [2] BRUNET M, LAFAGE R, AUBRY S, et al.The clean sky programme:Environmental benefits at aircraft level[C]//15th AIAA Aviation Technology, Integration, and Operations Conference.Reston:AIAA, 2015:6-22. [3] 陈迎春.C919飞机空气动力设计[J].航空科学技术, 2012(5):10-13. http://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201205006.htmCHEN Y C.C919 aircraft aerodynamic design[J].Aeronautical Science & Technology, 2012(5):10-13(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201205006.htm [4] URNES J, NGUYEN N, IPPOLITO C, et al.A mission adaptive variable camber flap control system to optimize high lift and cruise lift-to-drag ratios of future n+3 transport aircraft[C]//51th AIAA Aerospace Sciences Meeting.Reston:AIAA, 2013:1-7. [5] KOTA S.Shape control of adaptive structures using compliant mechanisms:AFRLSR-BL-TR-00-0125[R].Ann Arbor:Department of Mechanical Engineering and Applied Mechanics, 2000. [6] KERR-JIA L, KOTA S.Design of compliant mechanisms for morphing stricture shapes[J].Journal of Intelligent Material Systems and Structures, 2003, 14(6):279-391. [7] MARQUES M, GAMBOA P, ANDRADE E.Design of a variable camber flap for minimum drag and improved energy efficiency[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2009:1-19. [8] DE GASPARI A, RICCI S, ANTUNES A, et al.Application of active camber morphing concept to a regional aircraft[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference.Reston:AIAA, 2014:1-13. [9] YOKOZEKI T, SUGIURA A.Development and wind tunnel test of variable camber morphing wing:AIAA-2014-1261[R].Reston:AIAA, 2014. [10] KAUL U K, NGUYEN N T.Drag optimization study of variable camber continuous trailing edge flap using overflow:AIAA-2014-2444[R].Reston:AIAA, 2014. [11] LYU Z J, MARTINS J R R A.Aerodynamic shape optimization of an adaptive morphing trailing-edge wing[J].Journal of Aircraft, 2015, 52(6):1951-1970. doi: 10.2514/1.C033116 [12] 王婷, 王帮峰, 芦吉云, 等.一种拓扑优化方法在机翼可变后缘中的研究[J].机械科学与技术, 2011, 30(1):1660-1663. http://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201110014.htmWANG T, WANG B F, LU J Y, et al.The study of a topological optimization method on the adaptive wing's trailing edge[J].Mechanical Science and Technology for Aerospace Engineering, 2011, 30(1):1660-1663(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201110014.htm [13] 尹维龙, 石庆华, 田冬奎.变体后缘的索网传动机构设计与分析[J].航空学报, 2013, 34(8):1824-1831. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308009.htmYIN W L, SHI Q H, TIAN D K.Design and analysis of transmission mechanism with cable networks for morphing trailing edge[J].Acta Aeronoutica et Astronautica Sinica, 2013, 34(8):1824-1831(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308009.htm [14] 陈钱, 白鹏, 尹维龙, 等.可连续光滑偏转后缘的变弯度翼型气动特性分析[J].空气动力学报, 2010, 28(1):46-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201001006.htmCHEN Q, BAI P, YIN W L, et al.Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J].Acta Aerodynamica Sinica, 2010, 28(1):46-53(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201001006.htm [15] 郭同彪, 白俊强, 杨体浩.后缘连续变弯对跨音速翼型气动特性影响研究[J].航空学报, 2016, 37(2):513-521.GUO T B, BAI J Q, YANG T H.The influence investigation of continuous trailing-edge variable camber on the aerodynamic characteristics of transonic airfoils[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(2):513-521(in Chinese). [16] 梁煜, 单肖文.大型民机翼型变弯度气动特性分析与优化设计[J].航空学报, 2016, 37(3):790-798. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201603005.htmLIANG Y, SHAN X W.Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(3):790-798(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201603005.htm [17] SEDERBERG T W, PARRY S R.Free-form deformation of solid geometric models[J].Computer Graphics, 1986, 20(4):151-160. doi: 10.1145/15886 [18] JOHNSON F T, TINOCO E N, YU N J.Thirty years of development and application of CFD at Boeing commercial airplanes, seattle[J].Computers & Fluids, 2005, 34(10):1115-1151. http://calmarresearch.com/NF/STG/AGPS/media/aiaa-2003-3439.pdf [19] LEVY D W, LAFLIN K R, TINOCO E N, et al.Summary of data from the fifth computational fluid dynamics drag prediction workshop[J].Journal of Aircraft, 2014, 51(4):1194-1213. doi: 10.2514/1.C032389 [20] BOER A D, SCHOOT V D, BIJL H.Mesh deformation based on radial basis function interpolation[J].Computers & Structures, 2007, 85(11-14):784-795. https://www.deepdyve.com/lp/elsevier/efficient-mesh-deformation-based-on-radial-basis-function-cHlCdtuHx1