留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于振动声调制的板类结构裂纹定位成像

杨晓华 刘学君 张玎 辛志东

杨晓华, 刘学君, 张玎, 等 . 基于振动声调制的板类结构裂纹定位成像[J]. 北京航空航天大学学报, 2017, 43(8): 1509-1516. doi: 10.13700/j.bh.1001-5965.2016.0595
引用本文: 杨晓华, 刘学君, 张玎, 等 . 基于振动声调制的板类结构裂纹定位成像[J]. 北京航空航天大学学报, 2017, 43(8): 1509-1516. doi: 10.13700/j.bh.1001-5965.2016.0595
YANG Xiaohua, LIU Xuejun, ZHANG Ding, et al. Localization and imaging of crack damage in plate-like structures based on vibro-acousic modulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1509-1516. doi: 10.13700/j.bh.1001-5965.2016.0595(in Chinese)
Citation: YANG Xiaohua, LIU Xuejun, ZHANG Ding, et al. Localization and imaging of crack damage in plate-like structures based on vibro-acousic modulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1509-1516. doi: 10.13700/j.bh.1001-5965.2016.0595(in Chinese)

基于振动声调制的板类结构裂纹定位成像

doi: 10.13700/j.bh.1001-5965.2016.0595
基金项目: 

总装"十二五"预研项目 143092015

详细信息
    作者简介:

    杨晓华   男, 博士, 教授, 博士生导师。主要研究方向:飞机结构寿命评定、结构腐蚀疲劳

    刘学君  男,博士研究生。主要研究方向:飞机结构寿命评定、飞机结构健康监测

    通讯作者:

    杨晓华, E-mail: 13964889511@163.com

  • 中图分类号: V219;TB559

Localization and imaging of crack damage in plate-like structures based on vibro-acousic modulation

Funds: 

General Armament Department 12th Five-Year Plan Advanced Research Fund Projects 143092015

More Information
  • 摘要:

    针对线性Lamb波在监测闭合裂纹及微裂纹方面的不足,基于振动声调制理论,提出了一套板类结构中裂纹损伤定位方法。通过分析仅有高频(HF)激励和高低频(HF和LF)同时激励时,声波在含裂纹结构中的传播路径及其信号成分组成,提出了一种含损伤信息信号的提取技术,继而结合延时叠加算法,参考有基准的线性Lamb波损伤定位方法,对板类结构中的疲劳裂纹进行了定位成像。试验证明,该方法可在无需原始健康基准信号的前提下,有效定位出平板结构中的疲劳裂纹,为结构中接触类损伤的定位成像提供了思路。

     

  • 图 1  振动声调制示意图

    Figure 1.  Schematic of vibro-acoustic modulation

    图 2  有低频振动及无低频振动高频信号的传播路径示意图

    Figure 2.  Schematic of HF signal propagation path when there is LF vibration and no LF vibration

    图 3  延时叠加成像原理

    Figure 3.  Principle of delay and sum imaging

    图 4  试验件及传感器布置

    Figure 4.  Test specimen and sensor arrangement

    图 5  传感信号的频谱图

    Figure 5.  Spectrogram of sensing signal

    图 6  信号频谱图在各谐波频率附近的局部放大图

    Figure 6.  Locally amplified spectrogram of sensing signal near different harmonic frequency

    图 7  无低频振动时传感信号的频谱图及其在基频谐波频率附近的局部放大图

    Figure 7.  Spectrogram of sensing signal without low frequency vibration and its locally amplified spectrogram near by fundamental waves frequency

    图 8  含损伤信息信号及带通滤波后含损伤信息信号的频谱图

    Figure 8.  Spectrogram of signal with damage information and of band-pass filtered signal with damage information

    图 9  试验现场

    Figure 9.  Test site

    图 10  各传感路径的含损伤信息信号

    Figure 10.  Signal of damage information for each sensing path

    图 11  有边界反射时的定位成像结果

    Figure 11.  Localization and imaging results with boundary reflection

    图 12  信号截断后的定位成像结果

    Figure 12.  Localization and imaging results after signal truncation

  • [1] 张行.断裂与损伤力学[M].北京:北京航空航天大学出版社, 2006:1-38.

    ZHANG X.Fracture and damage mechanics[M].Beijing:Beihang University Press, 2006:1-38(in Chinese).
    [2] 袁慎芳.结构健康监控[M].北京:国防工业出版社, 2007:206-212.

    YUAN S F.Structural health monitoring and damage control[M].Beijing:National Defence Industry Press, 2007:206-212(in Chinese).
    [3] STASZEWSKI W J, BOLLER C, TOMLINSON G R.Health monitoring of aerospace structures:Smart sensor technologies and signal processing[M].Chichester:Wiley & Sons Ltd., 2004:102-137.
    [4] GRABOWSKI K, GAWRONSKI M, BARAN I, et al.Time-distance domain transformation for acoustic emission source localization in thin metallic plates[J].Ultrasonics, 2016, 68:142-149. doi: 10.1016/j.ultras.2016.02.015
    [5] ZHAO X, ROYER R L, OWENS S E, et al.Ultrasonic Lamb wave tomography in structural health monitoring[J].Smart Materials & Structures, 2011, 20(10):105002-105011. https://www.scientific.net/AMR.282-283.574
    [6] NOVAK A, BENTAHAR M, TOURNAT V, et al.Nonlinear acoustic characterization of micro-damaged materials through higher harmonic resonance analysis[J].NDT & E International, 2011, 45(1):1-8. doi: 10.1007%2Fs12541-009-0019-y.pdf
    [7] PIECZONKA L, KLEPKA A, STASZEWSKI W J.Nonlinear vibroacoustic wave modulation for structural damage detection:An overview[J].Optical Engineering, 2016, 55(1):011005.
    [8] ROSE J L.Ultrasonic guided waves in solid media[M].Cambridge:Cambridge University Press, 2014:61-89.
    [9] BRODA D, STASZEWSKI W J, MARTOWICZ A, et al.Modelling of nonlinear crack-wave interactions for damage detection based on ultrasound-A review[J].Journal of Sound & Vibration, 2014, 333(4):1097-1118. http://www.doc88.com/p-7704456776499.html
    [10] 吴斌, 颜丙生, 何存富, 等.AZ31镁合金早期力学性能退化非线性超声检测[J].航空材料学报, 2011, 31(1):87-92. http://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201101017.htm

    WU B, YAN B S, HE C F, et al.AZ31 magnesium early mechanical performance degradation nondestructive testing using nonlinear ultrasonic[J].Journal of Aeronautical Materials, 2011, 31(1):87-92(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201101017.htm
    [11] 焦敬品, 孙俊俊, 吴斌, 等.结构微裂纹混频非线性超声检测方法研究[J].声学学报, 2013, 38(6):648-656. http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201306002.htm

    JIAO J P, SUN J J, WU B, et al.A frequency-mixing nonlinear ultrasonic technique for micro-crack detection[J].Acta Acusitca, 2013, 38(6):648-656(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201306002.htm
    [12] DUTTA D, SOHN H, HARRIES K, et al.A nonlinear acoustic technique for crack detection in metallic structures[C]//Proceedings of Health Monitoring of Structural and Biological Systems.Orlando:SPIE, 2009:251-262.
    [13] SOLODOV I, PFLEIDERER K, BUSSE G.Nonlinear acoustic NDE:Inherent potential of complete nonclassical spectra[M].New York:Springer, 2006:467-486.
    [14] DZIEDZIECH K, PIECZONKA L, KIJANKA P, et al.Enhanced nonlinear crack-wave interactions for structural damage detection based on guided ultrasonic waves[J].Structural Control & Health Monitoring, 2016, 23(8):1108-1120. http://www.ndt.net/events/EWSHM2016/app/content/Paper/376_Staszewski.pdf
    [15] PIECZONKA L, KLEPKA A, UHL T, et al.Damage imaging in nonlinear vibro-acoustic modulation tests[C]//Proceedings of Health Monitoring of Structural and Biological Systems.Orlando:SPIE, 2015:9438E.
    [16] SOHN H, LIM H J, DESIMIO M P, et al.Nonlinear ultrasonic wave modulation for online fatigue crack detection[J].Journal of Sound & Vibration, 2014, 333(5):1473-1484. doi: 10.1088/0964-1726/25/12/125034/pdf
    [17] 胡海峰. 板状金属结构健康监测的非线性超声理论与关键技术研究[D]. 长沙: 国防科学技术大学, 2011: 45-50.

    HU H F.Research on theory and key technologies of nonlinear ultrasonics for health monitoring of plate-like metallic structures[D].Changsha:National University of Defense Technology, 2011:45-50(in Chinese).
    [18] 焦敬品, 何存富, 吴斌.接触缺陷的振动调制超声导波检测技术研究[J].声学学报, 2009, 34(3):242-248. http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200903010.htm

    JIAO J P, HE C F, WU B.Vibro-modulation and guided wave techniques for contact defect detection in plate[J].Acta Acustica, 2009, 34(3):242-248(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200903010.htm
    [19] KIM S, ADAMS D E, SOHN H, et al.Crack detection tech-nique for operating wind turbine blades using vibro-acoustic modulation[J].Structural Health Monitoring, 2014, 13(6):660-670. doi: 10.1177/1475921714553732
    [20] ZHANG C, QIU J, JI H, et al.Damage localization using warped frequency transform in active structural health monitoring[J].International Journal of Applied Electromagnetics & Mechanics, 2015, 47(4):897-909.
    [21] GIURGIUTIU V.Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring[J].Journal of Intelligent Material System and Structures, 2005, 16(4):291-305. doi: 10.1177/1045389X05050106
  • 加载中
图(12)
计量
  • 文章访问数:  811
  • HTML全文浏览量:  206
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-13
  • 录用日期:  2016-08-11
  • 网络出版日期:  2017-08-20

目录

    /

    返回文章
    返回
    常见问答