Numerical simulation of effect of nozzle layout on jet lateral control for missiles
-
摘要:
为保持飞行器在稀薄大气中的机动性,通常采用喷流反控制作用(RCS),但在超声速来流中,这会导致飞行器表面出现复杂的喷流干扰流场,对飞行控制造成了巨大影响。为提高对超声速条件下的侧向喷流控制作用的规律性认识,应用数值模拟方法,研究了超声速条件下的无舵光滑弹体和带尾舵的弹-翼组合体上的声速侧向喷流控制问题。开展了关于喷口布局对侧向喷流控制效果影响规律的研究工作,并通过引入法向干扰力沿程增长系数从定量角度加以分析。计算结果表明:在有尾舵的情况下,喷口位置的后移和马赫数的增加能够显著增强侧向喷流控制效果;当喷口位置位于舵面之前时,喷流干扰力放大系数随迎角增大而增大,随来流静压增大而减小;当喷流位置后移至舵面之后时,规律相反;在某些喷口位置和来流条件下,弹-翼组合体的侧向控制效果与无舵光滑弹体相比并不具备优势。
Abstract:In order to keep the motility in the thin atmosphere, air vehicles usually employ reaction control system (RCS), but in supersonic flow, it leads to complex jet interaction flow field on the surface of air vehicles, which has enormous influence on flight control. In order to improve the regularity understanding of jet lateral control, a model without any vane and a model with four tail vanes were used to study the sonic jet control effects in supersonic cross-flow by numerical simulation. The investigation of the influence of the jet location on the jet lateral control was conducted and the quantitative analysis of the contribution of different characteristic regions on the sweep to the jet lateral control was given. The numerical results indicate that as to wing-body configuration, the backward moving of the jet location and the increase of Mach number observably improve the jet lateral control effect; the amplification coefficient of the jet interaction force increases with the increasing angle of attack, and decreases with the increasing static pressure on condition that the jet is located before the tail vane; however, the law is opposite on condition that the jet is located after the tail vane; wing-body configuration, compared to body-alone configuration, does not have advantages on jet lateral control effects under some jet location and flow conditions.
-
Key words:
- transverse jet /
- lateral control /
- wing-body configuration /
- jet position /
- angle of attack
-
-
[1] 李素循.激波与边界层主导的复杂流动[M].北京:科学出版社, 2007:167-170.LI S X.Complicated flow governed by shock and boundary layer[M].Beijing:Science Press, 2007:167-170(in Chinese). [2] SRIVASTAVA B.Computational analysis and validation for lateral jet controlled missiles[J].Journal of Spacecraft and Rockets, 1997, 34(5):584-592. doi: 10.2514/2.3272 [3] DESPIRITO J.Factors affecting reaction jet interaction effects on projectiles:AIAA-2011-3031[R].Reston:AIAA, 2011. [4] BUCK G M.Experimental measurement of RCS jet interaction effect on a capsule entry vehicle:AIAA-2008-1229[R].Reston:AIAA, 2008. [5] ZUKOSKI E, SPAID F.Secondary injection of gases into supersonic flow[J].AIAA Journal, 1964, 2(10):1689-1696. doi: 10.2514/3.2653 [6] CHAMPINGY P, LACAU R.Lateral jet control for tactical missiles:N95-14448[R].Tousouse:ONERA, 1994. [7] GRUBER M, NEJAD A, CHEN T.Transverse injection from circular and elliptic nozzles into a supersonic cross flow[J].Journal of Propulsion and Power, 2000, 16(3):449-457. doi: 10.2514/2.5609 [8] GRAHAM M, WEINACHT P.Numerical investigation of supersonic jet interaction for axisymmetric bodies[J].Journal of Spacecraft and Rockets, 2000, 37(5):675-683. doi: 10.2514/2.3617 [9] BRANDEIS J, GILL J.Experimental investigation of super-and hypersonic jet interaction on missile configurations[J].Journal of Spacecraft and Rockets, 1998, 35(3):296-302. doi: 10.2514/2.3354 [10] 李斌, 王学占, 刘仙名.大攻角侧向多喷干扰流场特性数值模拟[J].航空学报, 2015, 36(9):2828-2839. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201509006.htmLI B, WANG X Z, LIU X M.Numerical investigation of multi-lateral jets interactions flow characteristics at high angle of attack[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2828-2839(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201509006.htm [11] 陈坚强, 张毅锋, 江定武, 等.侧向多喷口干扰复杂流动数值模拟研究[J].力学学报, 2008, 40(6):735-743. doi: 10.6052/0459-1879-2008-6-2008-020CHEN J Q, ZHANG Y F, JIANG D W, et al.Numerical simulation of complex flow with multi lateral jets interactions[J].Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):735-743(in Chinese). doi: 10.6052/0459-1879-2008-6-2008-020 [12] 阎超.计算流体力学方法与应用[M].北京:北京航空航天大学出版社, 2006:18-25.YAN C.Method and application of computational fluid dynamics[M].Beijing:Beihang University Press, 2006:18-25(in Chinese). [13] 李亚超, 阎超, 张翔, 等.超声速横向喷流侧向控制的数值模拟[J].北京航空航天大学学报, 2015, 41(6):1073-1079. http://bhxb.buaa.edu.cn/CN/abstract/abstract13291.shtmlLI Y C, YAN C, ZHANG X, et al.Numerical simulation of lateral control in supersonic cross jet flow[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1073-1079(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13291.shtml [14] GRAHAM M, WEINACHT P, BRANDEIS J.Numerical investigation of supersonic jet interaction for finned bodies[J].Journal of Spacecraft and Rochets, 2002, 39(3):376-383. doi: 10.2514/2.3836 [15] 耿云飞. 高超声速飞行器减阻防热新方法数值模拟研究[D]. 北京: 北京航空航天大学, 2011. http://www.cqvip.com/QK/91029X/201103/37920869.htmlGENG Y F.Numerical simulation of the new methods of drag reduction and themal protection in the hypersonic vehicle design[D].Beijing:Beihang University, 2011(in Chinese). http://www.cqvip.com/QK/91029X/201103/37920869.html