-
摘要:
复合材料在现代飞机结构中的应用越来越广泛,为了有效地对飞机机翼健康状态进行预测,提出了基于多元经验模态分解(MEMD)和极限学习机(ELM)的飞机机翼健康状态预测方法。以某型飞机复合材料机翼盒段为具体研究对象,对其进行冲击与疲劳加载试验,利用光纤传感器及其采集系统募集飞机复合材料机翼盒段的原始应变信息,对其健康状态予以表征。对所采集的原始应变信息进行MEMD分解,提取分解后各频带信号的能量熵作为表征飞机复合材料机翼盒段健康状态的特征信息,采用动态主元分析法(DPCA)将所提取的能量熵特征信息进行融合,采用融合后所得到的能量熵构建ELM预测模型,对某型飞机复合材料机翼盒段健康状态进行预测。试验研究表明,本文方法可以有效实现飞机机翼的健康状态预测,具有很好的应用前景。
-
关键词:
- 复合材料 /
- 健康状态 /
- 多元经验模态分解(MEMD) /
- 能量熵 /
- 极限学习机(ELM)
Abstract:Composite materials are more and more widely used in the modern aircraft structure. In order to effectively forecast the health state of aircraft wing, the multivariate empirical mode decomposition (MEMD) energy entropy and extreme learning machine (ELM) model are introduced into prediction method of aircraft wing health state. A certain type of aircraft's composite wing box section is taken as the specific research object. Then we carried out fatigue load tests after impacting it. The original strain information of aircraft's composite wing box section was obtained by fiber optic sensor acquisition system, and the health state of aircraft's composite wing box section was represented. Then, the original strain information was decomposed by MEMD, and the energy entropy was extracted from the band signal which is decomposed with MEMD as the feature. The energy entropy was then fused by dynamic principal component analysis (DPCA). The energy entropy after fusion was taken to construct the ELM prediction model. And we forecasted the structural damage of a certain aircraft's composite wing box section. Experimental research shows that the method can achieve the prediction of aircraft wing health state effectively and has a very good application prospect.
-
-
[1] 郑锡涛, 李泽江, 李光亮.含损伤复合材料层合板剩余压缩强度研究进展[J].宇航材料工艺, 2011, 41(3):20-26. http://www.cnki.com.cn/Article/CJFDTOTAL-YHCG201103008.htmZHENG X T, LI Z J, LI G L.Advance of study on residual compressive strength of damaged composite laminates[J].Aerospace Material & Technology, 2011, 41(3):20-26(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YHCG201103008.htm [2] 徐颖. 复合材料层合板冲击损伤及冲击后疲劳寿命研究[D]. 南京: 南京航空航天大学, 2007: 108-123.XU Y.Research on impact damage of laminates and fatigue life of impacted laminates[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:108-123(in Chinese). [3] 李伟占. 复合材料层合板损伤失效模拟分析[D]. 哈尔滨: 哈尔滨工程大学, 2012: 29-55.LI W Z.Progressive damage analysis of composite laminates[D].Harbin:Harbin Engineering University, 2012:29-55(in Chinese). [4] 施志凯. 热力耦合下复合材料层合板渐进性损伤分析[D]. 大连: 大连理工大学, 2013: 43-60.SHI Z K.Progressive damage analysis of laminated composite under thermal-mechanical coupling load[D].Dalian:Dalian University of Technology, 2013:43-60(in Chinese). [5] 鲁国富. 直升机复合材料桨叶疲劳研究[D]. 南京: 南京航空航天大学, 2010: 59-71.LU G F.Research on fatigue progressive damage analysis method for composite of helicopter blade[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:59-71(in Chinese). [6] SUNDARESAN M J, SCHULZ M J, GHOSHAL A, et al.A neural system for structural health monitoring[C]//Proceedings of SPIE, Smart Structures and Materials.Bellingham, WA:SPIE, 2001, 4328:130-141. [7] KIRIKERA G, DATTA S, SCHULZ M J, et al.Recent advances in an artificial neural system for structural health monitoring[C]//Proceedings of the SPIE, NDE and Health Monitoring of Aerospace materials and Composites Ⅱ.Bellingham, WA:SPIE, 2003:152-163. [8] 刘源. 基于多元EMD的BCI信号处理研究[D]. 秦皇岛: 燕山大学, 2013: 22-39.LIU Y.Study on signal processing of BCI based on multivariate empirical mode decomposition[D].Qinhuangdao:Yanshan University, 2013:22-39(in Chinese). [9] 张毅, 周春雨, 罗元.基于MEMD的运动想象脑电信号的特征提取与分析[J].重庆邮电大学学报(自然科学版), 2015, 27(3):386-391. doi: 10.3979/j.issn.1673-825X.2015.03.016ZHANG Y, ZHOU C Y, LUO Y.Feature extraction and analysis of imaginary movements in EEG based on MEMD[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(3):386-391(in Chinese). doi: 10.3979/j.issn.1673-825X.2015.03.016 [10] 武哲, 杨绍普, 刘永强.基于多元经验模态分解的旋转机械早期故障诊断方法[J].仪器仪表学报, 2016, 37(2):241-248. http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201602001.htmWU Z, YANG S P, LIU Y Q.Rotating machinery early fault diagnosis method based on multivariate empirical mode decomposition[J].Chinese Journal of Scientific Instrument, 2016, 37(2):241-248(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201602001.htm [11] 张超. 基于自适应振动信号处理的旋转机械故障诊断研究[D]. 西安: 西安电子科技大学, 2012: 26-43.ZHANG C.Fault diagnosis research of rotating machinery based on adaptive processing of vibration signal[D].Xi'an:Xidian University, 2012:26-43(in Chinese). [12] 张超, 陈建军, 郭迅.基于EMD能量熵和支持向量机的齿轮故障诊断方法[J].振动与冲击, 2010, 29(10):216-220. doi: 10.3969/j.issn.1000-3835.2010.10.045ZHANG C, CHEN J J, GUO X.A gear fault diagnosis method based on EMD energy entropy and SVM[J].Journal of Vibration and Shock, 2010, 29(10):216-220(in Chinese). doi: 10.3969/j.issn.1000-3835.2010.10.045 [13] 张超, 陈建军, 郭迅.基于EEMD能量熵和支持向量机的齿轮故障诊断方法[J].中南大学学报(自然科学版), 2012, 43(3):932-939. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201203024.htmZHANG C, CHEN J J, GUO X.Gear fault diagnosis method based on ensemble empirical mode decomposition energy entropy and support vector machine[J].Journal of Central South University (Science and Technology), 2012, 43(3):932-939(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201203024.htm [14] 石怀涛, 刘建昌, 丁晓迪, 等.基于混合动态主元分析的故障检测方法[J].控制工程, 2012, 19(1):148-151. http://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201201038.htmSHI H T, LIU J C, DING X D, et al.Fault detection based on hybrid dynamic principal component analysis[J].Control Engineering of China, 2012, 19(1):148-151(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201201038.htm [15] 钟丽丽. 基于动态主元分析的故障诊断研究[D]. 青岛: 青岛科技大学, 2013: 18-21.ZHONG L L.Research on fault dlagnosis of dynamic principle component analysis[D].Qingdao:Qingdao University of Science & Technology, 2013:18-21(in Chinese). [16] 李磊. 基于极限学习机的风机机械传动部件剩余寿命预测研究[D]. 秦皇岛: 燕山大学, 2015: 20-36.LI L.Residual life prediction research for mechanical drive components of wind turbing based on extreme learning machine[D].Qinhuangdao:Yanshan University, 2015:20-36(in Chinese). [17] 李培. 基于PCA-ELM的预测模型在煤矿突水预测中的应用[D]. 徐州: 中国矿业大学, 2014: 18-26.LI P.The application of forecasting model based on PCA-ELM in coal mine water burst prediction[D].Xuzhou:China University of Mining & Technology, 2014:18-26(in Chinese). [18] 潘华贤, 程国建, 蔡磊.极限学习机与支持向量机在储层渗透率预测中的对比研究[J].计算机工程与科学, 2010, 30(2):131-134. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201002037.htmPAN H X, CHENG G J, CAI L.Comparison of the extreme learning machine with the support vector machine for reservoir permeability prediction[J].Computer Engineering & Science, 2010, 30(2):131-134(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201002037.htm