留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢动力无人机大展弦比机翼静气弹特性分析

郝帅 马铁林 甘文彪 李根

郝帅, 马铁林, 甘文彪, 等 . 氢动力无人机大展弦比机翼静气弹特性分析[J]. 北京航空航天大学学报, 2017, 43(8): 1670-1676. doi: 10.13700/j.bh.1001-5965.2016.0611
引用本文: 郝帅, 马铁林, 甘文彪, 等 . 氢动力无人机大展弦比机翼静气弹特性分析[J]. 北京航空航天大学学报, 2017, 43(8): 1670-1676. doi: 10.13700/j.bh.1001-5965.2016.0611
HAO Shuai, MA Tielin, GAN Wenbiao, et al. Static aeroelastic characteristics analysis of high-aspect-ratio wing for hydrogen-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1670-1676. doi: 10.13700/j.bh.1001-5965.2016.0611(in Chinese)
Citation: HAO Shuai, MA Tielin, GAN Wenbiao, et al. Static aeroelastic characteristics analysis of high-aspect-ratio wing for hydrogen-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1670-1676. doi: 10.13700/j.bh.1001-5965.2016.0611(in Chinese)

氢动力无人机大展弦比机翼静气弹特性分析

doi: 10.13700/j.bh.1001-5965.2016.0611
基金项目: 

航空科学基金 10200002014129002

详细信息
    作者简介:

    郝帅  男, 硕士研究生。主要研究方向:飞行器总体设计、流固耦合技术、多学科优化技术

    马铁林  男, 博士, 高级工程师。主要研究方向:飞行器总体设计、无人机技术、多学科优化技术

    甘文彪  男, 博士, 讲师。主要研究方向:飞行器总体设计、飞行器气动设计、计算流体力学

    李根  男, 硕士研究生。主要研究方向:飞行器总体设计、飞行器气动设计、飞行汽车技术

    通讯作者:

    马铁林, E-mail: matielin@buaa.edu.cn

  • 中图分类号: V211.41;V211.47

Static aeroelastic characteristics analysis of high-aspect-ratio wing for hydrogen-powered UAV

Funds: 

Aeronautical Science Foundation of China 10200002014129002

More Information
  • 摘要:

    以氢动力超长航时无人机(UAV)为背景,针对其大展弦比轻质复合材料机翼,采用强耦合方法求解了几何非线性变形下的静气弹特性,对比了弹性机翼与刚性机翼的气动性能,并在此基础上,给出了一种刚性机翼的弹性气动力修正方法。结果表明:相比刚性机翼,弹性机翼巡航状态下的升阻比降低3.2%,滚转力矩导数和偏航力矩导数显著增大,对飞机的气动性能产生不利影响;基于刚性计算结果,对大展弦比机翼进行气动修正,是一种有效的大展弦比轻质机翼气动分析思路。

     

  • 图 1  CFD/CSD预估-校正迭代方法流程

    Figure 1.  Procedure of CFD/CSD prediction-correction iterative method

    图 2  氢动力超长航时无人机模型

    Figure 2.  Model of hydrogen-powered ultra-long endurance UAV

    图 3  翼尖后缘挠度及机翼升力系数的收敛曲线

    Figure 3.  Convergence curves of wingtip trailing edge deflection and lift coefficient

    图 4  机翼结构变形和流场

    Figure 4.  Structure deformation and flow field of wing

    图 5  机翼后缘挠度及剖面扭转角沿展向变化曲线

    Figure 5.  Change curves of wing trailing edge deflection and twist angle along spanwise direction

    图 6  刚性与弹性机翼的纵向气动特性对比

    Figure 6.  Comparison of longitudinal aerodynamic characteristics for rigid and elastic wings

    图 7  刚性与弹性机翼的横侧向力矩特性的对比

    Figure 7.  Comparison of directional-lateral moment characteristics for rigid and elastic wings

    图 8  刚性与弹性机翼沿展向升力系数和侧力系数的对比

    Figure 8.  Comparison of lift and side force coefficient along spanwise for rigid and elastic wings

    图 9  升阻比修正结果

    Figure 9.  Correction results of lift-drag ratio

    表  1  横侧向力矩导数对比

    Table  1.   Comparison of directional-lateral moment derivatives

    机翼类型CC
    刚性机翼-0.000 35-0.000 015
    弹性机翼-0.004 9-0.000 31
    下载: 导出CSV

    表  2  不同方法的气动效能对比

    Table  2.   Comparison of aerodynamic efficiency among different methods

    方法时间/h精度精细化水平
    常用频域方法<0.1一般(预计)一般
    CFD/CSD强耦合方法46
    RC方法0.5较好较好
    下载: 导出CSV
  • [1] OKAYA S.Aerospace fuel cell rapid prototyping power system concept[C]//12th International Energy Conversion Engineering Conference.Reston:AIAA, 2014:22-36.
    [2] LIM D T Y.A methodological approach for conducting a business case analysis (BCA) of the global observer joint capability technology demonstration (JCTD)[D].Monterey:Naval Postgraduate School, 2007:17-20.
    [3] PATIL M J, HODGES D H, CESNIK C E S.Characterizing the effects of geometrical nonlinearities on aeroelastic behavior of high-aspect-ratio wings[C]//International Forum on Aeroelasticity and Structural Dynamics.Reston:AIAA, 1999:22-25.
    [4] WANG Z, CHEN P C, LIU D D.Nonlinear aeroelastic analysis for a HALE wing including effects of gust and flow separation[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2007.
    [5] DOWELL E H.Some recent advances in nonlinear aeroelasticity:Fluid-structure interaction in the 21st century:AIAA-2010-3137[R].Reston:AIAA, 2010.
    [6] 杨国伟.计算气动弹性若干研究进展[J].力学进展, 2009, 39(4):406-420. doi: 10.6052/1000-0992-2009-4-J2009-046

    YANG G W.Recent progress on computational aeroelaticity[J].Advances in Mechanics, 2009, 39(4):406-420(in Chinese). doi: 10.6052/1000-0992-2009-4-J2009-046
    [7] 王文全, 张立翔.计算流固耦合动力学及其应用[M].北京:中国水利水电出版社, 2015:2-12.

    WANG W Q, ZHANG L X.Computational fluid-structure interaction dynamics and applications[M].Beijing:China Water & Power Press, 2015:2-12(in Chinese).
    [8] ALLEN C B, RENDALL T E S.Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions:AIAA-2007-3804[R].Reston:AIAA, 2007.
    [9] GARCIA J A.Numerical investigation of nonlinear aeroelastic effects on flexible high-aspect-ratio wings[J].Journal of Aircraft, 2005, 42(2):1025-1036. doi: 10.2514/1.6544
    [10] CARNIE G, QIN N.Fluid-structure interaction of HALE wing configuration with an efficient moving grid method:AIAA-2008-309[R].Reston:AIAA, 2008.
    [11] HEINRICH R, KROLL N.Fluid-structure coupling for aerodynamic analysis and design a DLR perspective:AIAA-2008-561[R].Reston:AIAA, 2008.
    [12] 马铁林, 马东立, 张华.大展弦比柔性机翼气动特性分析[J].北京航空航天大学学报, 2007, 33(7):781-784. http://bhxb.buaa.edu.cn/CN/abstract/abstract9479.shtml

    MA T L, MA D L, ZHANG H.Aerodynamic characteristic analysis of high aspect ratio elastic wing[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7):781-784(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9479.shtml
    [13] 张华, 马东立, 马铁林.弹性变形对柔性机翼气动特性影响分析[J].北京航空航天大学学报, 2008, 34(5):487-490. http://bhxb.buaa.edu.cn/CN/abstract/abstract9124.shtml

    ZHANG H, MA D L, MA T L.Analysis of aerodynamic characteristic of flexible wing caused by deflection[J].Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):487-490(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9124.shtml
    [14] 聂雪媛, 黄程德, 杨国伟.基于CFD/CSD耦合的结构几何非线性静气动弹性数值方法研究[J].振动与冲击, 2016, 35(8):48-53. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608008.htm

    NIE X Y, HUANG C D, YANG G W.Numerical analysis for aeroelastic with structural geometrical nonlinearity using a CFD/CSD coupled method[J].Journal of Vibration and Shock, 2016, 35(8):48-53(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608008.htm
    [15] DUKOWICZ J K, KODIS J W.Accurate conservative remapping(rezoning) for arbitrary Lagrangian-Eulerian computations[J].Journal on Scientific and Statistical Computing, 1987, 8(3):305-321. doi: 10.1137/0908037
    [16] BENSON D J, HALLQUIST J O.A single surface contact algorithm for the post-buckling analysis of shell structures[J].Computer Methods in Applied Mechanics and Engineering, 1990, 78(2):141-163. doi: 10.1016/0045-7825(90)90098-7
    [17] JANSEN K, SHAKIB F, HUGHES T J R.Fast projection algorithm for unstructured meshes[J].Computational Nonlinear Mechanics in Aerospace Engineering, 1992, 146(5):175-204. https://core.ac.uk/display/10448870
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  907
  • HTML全文浏览量:  27
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 录用日期:  2016-10-21
  • 网络出版日期:  2017-08-20

目录

    /

    返回文章
    返回
    常见问答