Static aeroelastic characteristics analysis of high-aspect-ratio wing for hydrogen-powered UAV
-
摘要:
以氢动力超长航时无人机(UAV)为背景,针对其大展弦比轻质复合材料机翼,采用强耦合方法求解了几何非线性变形下的静气弹特性,对比了弹性机翼与刚性机翼的气动性能,并在此基础上,给出了一种刚性机翼的弹性气动力修正方法。结果表明:相比刚性机翼,弹性机翼巡航状态下的升阻比降低3.2%,滚转力矩导数和偏航力矩导数显著增大,对飞机的气动性能产生不利影响;基于刚性计算结果,对大展弦比机翼进行气动修正,是一种有效的大展弦比轻质机翼气动分析思路。
Abstract:Based on hydrogen-powered ultra-long endurance unmanned aerial vehicle (UAV), nonlinear static aeroelastic characteristics were analyzed by the strong-coupled method for its high-aspect-ratio light composite wing. The aerodynamic comparison of rigid and elastic (aeroelastic deformation) wing was investigated. And then, an aerodynamic correction method, based on the result of the rigid wing, was applied to the elastic wing. The results show that the lift-drag ratio of the elastic wing reduces by 3.2% (compared to the rigid wing), and roll and yaw moments significantly increases to the disadvantage of aerodynamic performance. The aerodynamic correction based on rigid computation results is an efficient aerodynamic analysis strategy for high-aspect-ratio light composite wing.
-
表 1 横侧向力矩导数对比
Table 1. Comparison of directional-lateral moment derivatives
机翼类型 Clβ Cnβ 刚性机翼 -0.000 35 -0.000 015 弹性机翼 -0.004 9 -0.000 31 表 2 不同方法的气动效能对比
Table 2. Comparison of aerodynamic efficiency among different methods
方法 时间/h 精度 精细化水平 常用频域方法 <0.1 一般(预计) 一般 CFD/CSD强耦合方法 46 好 好 RC方法 0.5 较好 较好 -
[1] OKAYA S.Aerospace fuel cell rapid prototyping power system concept[C]//12th International Energy Conversion Engineering Conference.Reston:AIAA, 2014:22-36. [2] LIM D T Y.A methodological approach for conducting a business case analysis (BCA) of the global observer joint capability technology demonstration (JCTD)[D].Monterey:Naval Postgraduate School, 2007:17-20. [3] PATIL M J, HODGES D H, CESNIK C E S.Characterizing the effects of geometrical nonlinearities on aeroelastic behavior of high-aspect-ratio wings[C]//International Forum on Aeroelasticity and Structural Dynamics.Reston:AIAA, 1999:22-25. [4] WANG Z, CHEN P C, LIU D D.Nonlinear aeroelastic analysis for a HALE wing including effects of gust and flow separation[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2007. [5] DOWELL E H.Some recent advances in nonlinear aeroelasticity:Fluid-structure interaction in the 21st century:AIAA-2010-3137[R].Reston:AIAA, 2010. [6] 杨国伟.计算气动弹性若干研究进展[J].力学进展, 2009, 39(4):406-420. doi: 10.6052/1000-0992-2009-4-J2009-046YANG G W.Recent progress on computational aeroelaticity[J].Advances in Mechanics, 2009, 39(4):406-420(in Chinese). doi: 10.6052/1000-0992-2009-4-J2009-046 [7] 王文全, 张立翔.计算流固耦合动力学及其应用[M].北京:中国水利水电出版社, 2015:2-12.WANG W Q, ZHANG L X.Computational fluid-structure interaction dynamics and applications[M].Beijing:China Water & Power Press, 2015:2-12(in Chinese). [8] ALLEN C B, RENDALL T E S.Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions:AIAA-2007-3804[R].Reston:AIAA, 2007. [9] GARCIA J A.Numerical investigation of nonlinear aeroelastic effects on flexible high-aspect-ratio wings[J].Journal of Aircraft, 2005, 42(2):1025-1036. doi: 10.2514/1.6544 [10] CARNIE G, QIN N.Fluid-structure interaction of HALE wing configuration with an efficient moving grid method:AIAA-2008-309[R].Reston:AIAA, 2008. [11] HEINRICH R, KROLL N.Fluid-structure coupling for aerodynamic analysis and design a DLR perspective:AIAA-2008-561[R].Reston:AIAA, 2008. [12] 马铁林, 马东立, 张华.大展弦比柔性机翼气动特性分析[J].北京航空航天大学学报, 2007, 33(7):781-784. http://bhxb.buaa.edu.cn/CN/abstract/abstract9479.shtmlMA T L, MA D L, ZHANG H.Aerodynamic characteristic analysis of high aspect ratio elastic wing[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7):781-784(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9479.shtml [13] 张华, 马东立, 马铁林.弹性变形对柔性机翼气动特性影响分析[J].北京航空航天大学学报, 2008, 34(5):487-490. http://bhxb.buaa.edu.cn/CN/abstract/abstract9124.shtmlZHANG H, MA D L, MA T L.Analysis of aerodynamic characteristic of flexible wing caused by deflection[J].Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):487-490(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9124.shtml [14] 聂雪媛, 黄程德, 杨国伟.基于CFD/CSD耦合的结构几何非线性静气动弹性数值方法研究[J].振动与冲击, 2016, 35(8):48-53. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608008.htmNIE X Y, HUANG C D, YANG G W.Numerical analysis for aeroelastic with structural geometrical nonlinearity using a CFD/CSD coupled method[J].Journal of Vibration and Shock, 2016, 35(8):48-53(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608008.htm [15] DUKOWICZ J K, KODIS J W.Accurate conservative remapping(rezoning) for arbitrary Lagrangian-Eulerian computations[J].Journal on Scientific and Statistical Computing, 1987, 8(3):305-321. doi: 10.1137/0908037 [16] BENSON D J, HALLQUIST J O.A single surface contact algorithm for the post-buckling analysis of shell structures[J].Computer Methods in Applied Mechanics and Engineering, 1990, 78(2):141-163. doi: 10.1016/0045-7825(90)90098-7 [17] JANSEN K, SHAKIB F, HUGHES T J R.Fast projection algorithm for unstructured meshes[J].Computational Nonlinear Mechanics in Aerospace Engineering, 1992, 146(5):175-204. https://core.ac.uk/display/10448870