-
摘要:
针对可压缩多尺度流动数值模拟特点,研究一种五阶高分辨率紧致型激波捕捉格式——紧致重构加权基本无振荡(CRWENO)格式。该格式利用非线性权系数将低阶紧致格式加权组合以达到高阶精度。在光滑区域蜕化成具有高分辨率的五阶线性紧致格式,在间断附近则能保持计算稳定无振荡。对CRWENO格式、目前广泛使用的加权基本无振荡(WENO)格式及两格式对应的线性格式(即五阶线性迎风格式和五阶紧致格式)进行数值性能研究,评估非线性权系数对格式耗散及频谱特性的影响。使用一维、二维、三维典型算例进行数值试验,探讨线性/非线性、紧致/非紧致格式在可压缩多尺度流动模拟中的优势和不足。结果表明,CRWENO格式在强压缩性流场模拟中能够稳定地捕捉激波,其紧致特性则改善了非线性格式普遍存在的耗散过大、分辨率较差的问题,使其能够清晰捕捉多尺度流动结构。因此,该格式在可压缩多尺度流动模拟中具有较大优势。
Abstract:Aimed at compressible multiscale flow simulations, a fifth-order high-resolution compact shock capturing scheme, compact-reconstruction weighted essentially non-oscillatory (CRWENO), is studied. Nonlinear weights are used to combine lower-order compact schemes to approximate a higher-order compact scheme. The scheme becomes the fifth-order linear compact scheme in smooth regions, while preserves computational stability across discontinuities. Numerical properties were analyzed for CRWENO and weighted essentially non-oscillatory (WENO) which is widely used these days, as well as the linear schemes that they correspond to, i.e. the fifth-order upwind linear scheme and the fifth-order compact scheme. The impacts of nonlinear weights on dissipation and spectral properties are evaluated. The advancements and drawbacks of linear/nonlinear and compact/explicit schemes in compressible multiscale flow simulations are discussed by performing 1D, 2D and 3D typical numerical tests. It can be concluded that CRWENO scheme can obtain non-oscillatory results near strong discontinuous regions. Its compact characteristic improves the problems of over-dissipation and low resolution exiting in nonlinear schemes and makes it clearly resolve multiscale flow structures. In a word, CRWENO is a proper candidate for compressible multiscale flow simulations.
-
-
[1] 屈峰, 阎超, 于剑, 等.高精度激波捕捉格式的性能分析[J].北京航空航天大学学报, 2014, 40(8):1085-1089. http://bhxb.buaa.edu.cn/CN/abstract/abstract13000.shtmlQU F, YAN C, YU J, et al.Assessment of shock capturing methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Beingjing University of Aeronautics and Astronautics, 2014, 40(8):1085-1089(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13000.shtml [2] LELE S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics, 1992, 103(1):16-42. doi: 10.1016/0021-9991(92)90324-R [3] VAN LEER B.Towards the ultimate conservation difference scheme Ⅴ:A second-order sequal to Godunov's method[J].Journal of Computational Physics, 1979, 32(1):101-136. doi: 10.1016/0021-9991(79)90145-1 [4] HARTEN A.High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics, 1983, 49(3):357-393. doi: 10.1016/0021-9991(83)90136-5 [5] JIANG G S, SHU C W.Efficient Implementation of weighted ENO schemes[J].Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130 [6] GEROLYMOS G A, SÉNÉCHAL D, VALLET I.Very-high-order WENO schemes[J].Journal of Computational Physics, 2009, 228(23):8481-8524. doi: 10.1016/j.jcp.2009.07.039 [7] MARTIN M P, TAYLOR E M, WU M, et al.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J].Journal of Computational Physics, 2006, 220(1):270-289. doi: 10.1016/j.jcp.2006.05.009 [8] HENRICK A K, ASLAM T D, POWERS J M.Mapped weighted essentially non-oscillatory schemes:Achieving optimal order near critical points[J].Journal of Computational Physics, 2005, 207(2):542-567. doi: 10.1016/j.jcp.2005.01.023 [9] ACKER F, BORGES R B D R, COSTA B.An improved WENO-Z scheme[J].Journal of Computational Physics, 2016, 313:726-753. doi: 10.1016/j.jcp.2016.01.038 [10] GHOSH D, BAEDER J.Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws[J].SIAM Journal on Scientific Computing, 2012, 34(3):A1678-A1706. doi: 10.1137/110857659 [11] GHOSH D, MEDIDA S, BAEDER J D.Application of compact-reconstruction weighted essentially nonoscillatory schemes to compressible aerodynamic flows[J].AIAA Journal, 2014, 52(9):1858-1870. doi: 10.2514/1.J052654 [12] GHOSH D, CONSTANTINESCU E M, BROWN J.Efficient implementation of nonlinear compact schemes on massively parallel platforms[J].SIAM Journal on Scientific Computing, 2015, 37(3):C354-C383. doi: 10.1137/140989261 [13] PENG J, SHEN Y.Improvement of weighted compact scheme with multi-step strategy for supersonic compressible flow[J].Computers & Fluids, 2015, 115:243-255. http://dspace.imech.ac.cn/bitstream/311007/58426/1/J2015-065.pdf [14] ROE P L.Approximate Riemann solvers, parameter vectors and difference schemes[J].Journal of Computational Physics, 1981, 43(2):357-372. doi: 10.1016/0021-9991(81)90128-5 [15] GOTTLIEB S, SHU C.Total variation diminishing Runge-Kutta schemes[J].Mathematics of computation of the American Mathematical Society, 1998, 67(221):73-85. doi: 10.1090/mcom/1998-67-221 [16] 傅德薰, 马延文, 李新亮, 等.可压缩湍流直接数值模拟[M].北京:科学出版社, 2010:34-36.FU D X, MA Y W, LI X L, et al.Direct numerical simulation of the compressible turbulences[M].Beijing:Science Press, 2010:34-36(in Chinese). [17] FAUCONNIER D, DICK E.On the spectral and conservation properties of nonlinear discretization operators[J].Journal of Computational Physics, 2011, 230(12):4488-4518. doi: 10.1016/j.jcp.2011.02.025 [18] SOD G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics, 1978, 27(1):1-31. doi: 10.1016/0021-9991(78)90023-2 [19] WOODWARD P, COLELLA P.The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics, 1984, 54(1):115-173. doi: 10.1016/0021-9991(84)90142-6 [20] DEBONIS J R.Solutions of the Taylor-Green vortex problem using high resolution explicit finite difference methods:AIAA-2013-0382[R].Reston:AIAA, 2013. [21] BULL J R, JAMESON A.Simulation of the compressible Taylor-Green vortex using high-order flux reconstruction schemes[J].AIAA Journal, 2015, 53(9):2750-2761. doi: 10.2514/1.J053766 [22] DE WIART C C, HILLEWAERT K, DUPONCHEEL M, et al.Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number[J].International Journal for Numerical Methods in Fluids, 2014, 74(7):469-493. doi: 10.1002/fld.v74.7 [23] SAMTANEY R, PULLIN D I, KOSOVIC B.Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J].Physics of Fluids, 2001, 13(5):1415-1430. doi: 10.1063/1.1355682