-
摘要:
提出了一种变几何涡轮增压器用于发动机高空恢复功率的方法,并对其调节规律和相关特性进行研究。依据涡轮流动模型,分析了相同工况下不同喷嘴环开度对涡轮增压器工作的影响。在GT-POWER中建立了变几何涡轮增压发动机模型,通过全高度下不同工况的仿真分析,验证了变几何涡轮增压发动机恢复海平面功率的应用。结果表明,匹配了变几何涡轮增压器的发动机能够显著提高发动机高空可调范围,其使用升限从5 km提升到了6 km,对变几何涡轮增压器应用于恢复功率与喷嘴环开度的调节规律具有指导意义。
Abstract:A variable geometry turbocharger method was used to adjust the power of the engine. It's regulation law and characteristics was studied. According to the turbine flow model, the influence of different nozzle ring opening degrees on the turbocharger was analyzed under the same operating conditions. In GT-POWER, a variable geometry turbocharger engine model was established, and the application of the variable geometry turbocharger engine to recover the power of the sea was verified by the simulation and analysis of different working conditions. The results show that the engine can significantly improve the engine altitude adjustable range, enhancing the ceiling of engine usage from 5 km to 6 km, which is of guiding significance for application of variable geometry turbocharger to restoring power and the regulation of nozzle ring opening degree.
-
参数 数值 工作形式 四缸四冲程航空汽油机 最大扭矩/(N·m) 2 142 额定功率/kW 73.5 额定转速/(r·min-1) 5 500 使用升限/km 5 增压方式 单级废气阀涡轮增压 表 2 不同高度及转速下变几何涡轮增压与原机扭矩提升比
Table 2. Torque lifting rate of engine with VGT and original engine at different height and speed
% 高度/km 转速/(r·min-1) 5 500 5 000 4 500 4 000 3 500 4 0.25 0.76 0.34 8.69 14.65 5 2.25 1.07 3.01 16.01 14.77 6 0.59 0.02 2.16 18.73 10.95 7 4.11 3.07 10.32 24.99 13.47 -
[1] 丁水汀, 鲍梦瑶, 杜发荣.航空活塞发动机涡轮增压系统的安全边界研究[J].航空动力学报, 2011, 26(11):2534-2542. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201111021.htmDING S T, BAO M Y, DU F R.Safety margins analysis on turbocharging system in aircraft piston engine[J].Journal of Aerospace Power, 2011, 26(11):2534-2542(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201111021.htm [2] 徐斌, 谭龙兴, 杨世春, 等.飞机使用升限对增压活塞发动机的匹配要求[J].北京航空航天大学学报, 2014, 40(12):1643-1647. http://bhxb.buaa.edu.cn/CN/abstract/abstract13090.shtmlXU B, TAN L X, YANG S C, et al.Requirement from maximum rate of climbing of aircraft service ceiling to turbocharged reciprocating engine[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12):1643-1647(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13090.shtml [3] ZAMBONI G, CAPOBIANCO M.Influence of high and low pressure EGR and VGT control on in-cylinder pressure diagrams and rate of heat release in an automotive turbocharged diesel engine[J].Applied Thermal Engineering, 2013, 51(1):586-596. https://core.ac.uk/display/54802214 [4] YU B, DONG M C, BIAN W C.A low cost method for establishing hardware-in-loop platform for aviation piston engine electronic controller[C]//International Symposium on Computers and Informatics.Lyon:Atlantis Press, 2015:1289-1298. [5] 边文超. 航空活塞发动机控制器实物在回路仿真系统设计[D]. 南京: 南京航空航天大学, 2013: 14-59.BIAN W C.Research on hardware-in-loop simulation system of controller for an aviation piston engine[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:14-59(in Chinese). [6] 李红. VNT增压器控制系统研究[D]. 沈阳: 沈阳理工大学, 2013: 40-46.LI H.Research of VNT turbocharger control system[D].Shen-yang:Shenyang Ligong University, 2013:40-46(in Chinese). [7] Rotax Aircraft Engine.Operation, manual for ROTAX engine type 914 F[R].Vils:BRP-Rotax GmbH & Co.KG, Rotax Part:899374, 2007. [8] 朱大鑫.涡轮增压与涡轮增压器[M].北京:机械工业出版社, 1992:113-166.ZHU D X.Turbo charging method and turbocharger[M].Beijing:Mechanical Industry Press, 1992:113-166(in Chinese). [9] 郭林福, 马朝臣, 鲍捷.车用可变几何涡轮增压器执行机构的设计计算[J].车用发动机, 2002(2):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-CYFD200202001.htmGUO L F, MA C C, BAO J.Design and calculation of control mechanism for variable geometry turbocharger used in automobile[J].Vehicle Engine, 2002(2):5-8(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CYFD200202001.htm [10] 陈红. 航空涡轮增压汽油机特性及其优化特性匹配研究[D]. 北京: 北京交通大学, 2008: 28-34.CHEN H.Study on characteristics of aviation turbo gasoline engine and optimization research[D].Beijing:Beijing Jiaotong University, 2008:28-34(in Chinese). [11] 周帆, 徐斌, 杨世春, 等.基于神经网络PID的电动汽车轮毂电机调速设计与仿真[J].车辆与动力技术, 2015(2):53-57. http://www.cnki.com.cn/Article/CJFDTOTAL-BGTK201502013.htmZHOU F, XU B, YANG S C, et al.Design and simulation of electric vehicle in-hub motor speed control based on neural network PID[J].Vehicle & Power Technology, 2015(2):53-57(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BGTK201502013.htm [12] 彭成成. 高压共轨柴油机可变涡轮增压器匹配及控制策略研究[D]. 长春: 吉林大学, 2015: 71-79.PENG C C.Research on VNT match and control strategy of high pressure common rail diesel engine[D].Changchun:Jilin University, 2015:71-79(in Chinese). [13] 徐斌, 刘波, 杨世春, 等.某型航空活塞发动机进排气系统优化分析[J].航空动力学报, 2014, 29(3):624-630. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201403024.htmXU B, LIU B, YANG S C, et al.Optimization analysis of a aircraft piston engine intake and exhaust system[J].Journal of Aerospace Power, 2014, 29(3):624-630(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201403024.htm [14] 刘波. 电辅助航空涡轮增压器匹配特性研究[D]. 北京: 北京航空航天大学, 2015: 36-40.LIU B.Electric assisted aviation turbocharger matching characteristic research[D].Beijing:Beihang University, 2015:36-40(in Chinese). [15] 徐斌, 谭龙兴, 杨世春, 等.航空活塞发动机使用升限分析[J].北京航空航天大学学报, 2013, 39(12):1568-1572. http://bhxb.buaa.edu.cn/CN/abstract/abstract12791.shtmlXU B, TAN L X, YANG S C, et al.Analysis of service ceiling on piston aero-engine[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12):1568-1572(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12791.shtml