留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弹性的体系组件重要度及恢复策略

潘星 蒋卓 杨艳京

潘星, 蒋卓, 杨艳京等 . 基于弹性的体系组件重要度及恢复策略[J]. 北京航空航天大学学报, 2017, 43(9): 1713-1720. doi: 10.13700/j.bh.1001-5965.2016.0727
引用本文: 潘星, 蒋卓, 杨艳京等 . 基于弹性的体系组件重要度及恢复策略[J]. 北京航空航天大学学报, 2017, 43(9): 1713-1720. doi: 10.13700/j.bh.1001-5965.2016.0727
PAN Xing, JIANG Zhuo, YANG Yanjinget al. Resilience-based component importance and recovery strategy for system-of-systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1713-1720. doi: 10.13700/j.bh.1001-5965.2016.0727(in Chinese)
Citation: PAN Xing, JIANG Zhuo, YANG Yanjinget al. Resilience-based component importance and recovery strategy for system-of-systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1713-1720. doi: 10.13700/j.bh.1001-5965.2016.0727(in Chinese)

基于弹性的体系组件重要度及恢复策略

doi: 10.13700/j.bh.1001-5965.2016.0727
基金项目: 

国家自然科学基金 71171008

国家自然科学基金 71571004

详细信息
    作者简介:

    潘星   男, 副教授; 主要研究方向:系统工程与可靠性工程方面的交叉研究

    蒋卓   男, 硕士研究生; 主要研究方向:体系及系统工程

    杨艳京   男, 硕士研究生; 主要研究方向:体系及系统工程

    通讯作者:

    潘星, E-mail:panxing@buaa.edu.cn

  • 中图分类号: V57;TB114.3

Resilience-based component importance and recovery strategy for system-of-systems

Funds: 

National Natural Science Foundation of China 71171008

National Natural Science Foundation of China 71571004

More Information
  • 摘要:

    体系(SoS)在遭受内部或外部的干扰时性能会受到影响,体系结构作为体系设计和构建的基础,其弹性不仅是反映体系性能恢复能力的一个重要指标,更是体系演化性的重要体现。提出了一种基于弹性的体系结构评价方法,对体系的组件或系统进行重要度分析(CIMs)。首先,给出了体系结构弹性的明确定义并构建了相关的数学模型,综合权衡了性能损耗与恢复时间对体系组件重要度的影响;其次,通过分析不同的干扰事件和恢复策略,构建了基于重要度分析的体系弹性优化模型,并重点分析了其对体系性能恢复的影响;最后,以某体系结构的弹性评价为例,对本文提出的模型和方法进行了验证,优化后的恢复策略使体系性能的恢复效率有显著的提高。

     

  • 图 1  干扰事件发生后体系性能变化示意图

    Figure 1.  Schematic of SoS performance transition under occurrence of disruption event

    图 2  体系结构的拓扑[18]

    Figure 2.  Topology of SoS architecture[18]

    图 3  各组件的组件重要度累积概率分布曲线

    Figure 3.  Cumulative probability distribution curves of component importance for each component

    图 4  各组件的科普兰评分

    Figure 4.  Copeland score for each component

    图 5  体系性能恢复曲线

    Figure 5.  Performance recovery curves of SoS

    图 6  体系性能恢复曲线对比

    Figure 6.  Comparison of performance recovery curves of SoS

    表  1  体系性能恢复详情(改变第1级修复顺序)

    Table  1.   Performance recovery details of SoS (Change the priority of repair at the first level)

    编号 重要度排序/修复顺序 体系恢复效率 优化的比率/%
    99 2>10>12>7>6 1.350 3 1.95
    45 10>2>12>7>6 1.348 8 1.83
    111 2>12>10>7>6 1.348 6 1.82
    96 12>2>10>7>6 1.347 7 1.75
    109 2>12>7>10>6 1.324 5
    下载: 导出CSV

    表  2  体系性能恢复详情(改变第2级修复顺序)

    Table  2.   Performance recovery details of SoS (Change the priority of repair at the second level)

    编号 重要度排序/修复顺序 体系恢复效率 优化的比率/%
    25 1>8>3>9>11 1.488 8 12.40
    27 1>8>9>3>11 1.488 8 12.40
    33 1>3>9>8>11 1.486 6 12.24
    31 1>3>8>9>11 1.481 6 11.86
    109 11>9>3>1>8 1.324 5
    下载: 导出CSV
  • [1] 游光荣, 初军田, 吕少卿, 等.关于武器装备体系研究[J].军事运筹与系统工程, 2010, 24(24):15-22. http://www.cnki.com.cn/Article/CJFDTOTAL-JSYC201004002.htm

    YOU G R, CHU J T, LV S Q, et al.Study on weapon equipment system-of-systems[J].Military Operations Research and Systems Engineering, 2010, 24(24):15-22(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSYC201004002.htm
    [2] 潘星, 黄元星, 尹宝石.基于功能和联接的装备体系结构[J].系统工程与电子技术, 2012, 34(10):2054-2057. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201210015.htm

    PAN X, HUANG Y X, YIN B S.Equipment system-of-systems architecture based on functionality and connectivity[J].Systems Engineering and Electronics, 2012, 34(10):2054-2057(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201210015.htm
    [3] LIU H, TIAN Y L, GAO Y, et al.System of systems oriented flight vehicle conceptual design:Perspectives and progresses[J]. Chinese Journal of Aeronautics, 2015, 28(3):617-635. doi: 10.1016/j.cja.2015.04.017
    [4] 王华, 赵英俊, 钟季龙.装备体系结构的复杂网络混合模型建模[J].火力与指挥控制, 2015, 40(8):70-73. http://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201508017.htm

    WANG H, ZHAO Y J, ZHONG J L.Hybrid model of complex networks of equipment system-of-systems[J]. Fire Control and Command Control, 2015, 40(8):70-73(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201508017.htm
    [5] DELAURENTIES D.Understanding transportation as a system-of-systems design problem[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2005:1-14.
    [6] DAN D L, CALLAWAY R K.A system-of-systems perspective for future public policy decisions[J].Review of Policy Research, 2004, 21(6):829-837. doi: 10.1111/ropr.2004.21.issue-6
    [7] NAHAVANDI S, CREIGHTON D, LE V T, et al.Future integrated factories:A system of systems engineering perspective[M]//FATHI M. Integrated systems:Innovations and applications. Berlin:Springer, 2015:147-161.
    [8] UDAY P, MARAIS K B.Resilience-based system importance measures for system-of-systems[J].Procedia Computer Science, 2014, 28:257-264. doi: 10.1016/j.procs.2014.03.033
    [9] FANG Y P, PEDRONI N, ZIO E.Resilience-based component importance measures for critical infrastructure network systems[J].IEEE Transactions on Reliability, 2016, 65(2):502-512. doi: 10.1109/TR.2016.2521761
    [10] DESSAVRE D G, RAMIREZ-MARQUEZ J E, BARKER K.Multidimensional approach to complex system resilience analysis[J].Reliability Engineering and System Safety, 2015, 149:34-43. https://www.deepdyve.com/lp/elsevier/multidimensional-approach-to-complex-system-resilience-analysis-GHDL5To0zV
    [11] ZOBEL C W, KHANSA L.Characterizing multi-event disaster resilience[J].Computers and Operations Research, 2014, 42:83-94. doi: 10.1016/j.cor.2011.09.024
    [12] FATURECHI R, LEVENBERG E, MILLER-HOOKS E.Evaluating and optimizing resilience of airport pavement networks[J].Computers and Operations Research, 2014, 43:335-348. doi: 10.1016/j.cor.2013.10.009
    [13] OMER M, MOSTASHARI A, LINDEMANN U.Resilience analysis of soft infrastructure systems[J].Procedia Computer Science, 2014, 28:873-882. doi: 10.1016/j.procs.2014.03.104
    [14] JANIC M.Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event[J].Transportation Research Part A:Policy & Practice, 2015, 71:1-16. https://www.deepdyve.com/lp/elsevier/reprint-of-modelling-the-resilience-friability-and-costs-of-an-air-0RZx3WJZ0D
    [15] YOUN B D, HU C, WANG P, et al.Resilience-driven system design of complex engineered systems[J].Journal of Mechanical Design, 2011, 133(10):1179-1188. http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1450680
    [16] CARDOSO S R, BARBOSA-POVOAS A P F D, RELVAS S, et al.Resilience assessment of supply chains under different types of disruption[J].Computer Aided Chemical Engineering, 2014, 34:759-764. doi: 10.1016/B978-0-444-63433-7.50111-5
    [17] UDAY P, MARAIS K. Exploiting stand-in redundancy to improve resilience in a system-of-systems (SoS)[J]. Procedia Computer Science, 2013, 16(4):532-541. http://dtic.mil/ndia/2012/system/track214750.pdf
    [18] BARKER K, RAMIREZ-MARQUEZ J E, ROCCO C M.Resilience-based network component importance measures[J].Reliability Engineering and System Safety, 2013, 117(2):89-97. http://www.sciencedirect.com/science/article/pii/S0951832013000823
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  120
  • PDF下载量:  637
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-08
  • 录用日期:  2016-12-30
  • 网络出版日期:  2017-09-20

目录

    /

    返回文章
    返回
    常见问答