留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能Ar+、Xe+轰击SiO2的溅射模型

张建华 夏勇 丁利 商圣飞

张建华, 夏勇, 丁利, 等 . 低能Ar+、Xe+轰击SiO2的溅射模型[J]. 北京航空航天大学学报, 2017, 43(9): 1766-1772. doi: 10.13700/j.bh.1001-5965.2016.0744
引用本文: 张建华, 夏勇, 丁利, 等 . 低能Ar+、Xe+轰击SiO2的溅射模型[J]. 北京航空航天大学学报, 2017, 43(9): 1766-1772. doi: 10.13700/j.bh.1001-5965.2016.0744
ZHANG Jianhua, XIA Yong, DING Li, et al. Sputtering model of SiO2 for low energy Ar+ and Xe+ bombardment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1766-1772. doi: 10.13700/j.bh.1001-5965.2016.0744(in Chinese)
Citation: ZHANG Jianhua, XIA Yong, DING Li, et al. Sputtering model of SiO2 for low energy Ar+ and Xe+ bombardment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1766-1772. doi: 10.13700/j.bh.1001-5965.2016.0744(in Chinese)

低能Ar+、Xe+轰击SiO2的溅射模型

doi: 10.13700/j.bh.1001-5965.2016.0744
详细信息
    作者简介:

    张建华   男, 博士, 副研究员; 主要研究方向:航空宇航推进理论与技术、稀薄气体动力学、火箭发动机流场计算及测试

    通讯作者:

    张建华, E-mail:zjh@buaa.edu.cn

  • 中图分类号: V439+.1;V45;TB321

Sputtering model of SiO2 for low energy Ar+ and Xe+ bombardment

More Information
  • 摘要:

    为了得到在低能条件下更为精确的Ar+和Xe+轰击SiO2的溅射模型,对已有化合物溅射模型进行调研分析,总结了3种溅射模型,分别为Pencil模型、Bach模型和Seah模型,并对其不足之处加以分析。在Seah模型基础上,对溅射阈值采用新的计算方法,并利用等效原子法改进溅射参数和表面键能的计算方法,形成改进后的新模型。结合已有的关于Ar+和Xe+法向轰击SiO2的实验数据,对4种模型的计算结果进行对比分析。对于Ar+和Xe+法向轰击SiO2,改进后的溅射模型的均方根误差最小,拟合优度最高,均优于其他3种模型。说明在低能状态下,采用改进后的模型可以更为精确地计算Ar+和Xe+轰击SiO2的溅射率。

     

  • 图 1  Seah模型中当x=0, 0.25, 0.5, 1时溅射率变化

    Figure 1.  Variation of sputtering yields when x=0, 0.25, 0.5, 1 in Seah model

    图 2  不同能量Ar+法向轰击SiO2的溅射率

    Figure 2.  Energy dependence of sputtering yields of SiO2 for bombardment at normal incidence with Ar+

    图 3  不同能量Xe+法向轰击SiO2的溅射率

    Figure 3.  Energy dependence of sputtering yields of SiO2 for bombardment at normal incidence with Xe+

    图 4  不同x取值下的Seah模型与本文改进模型对比

    Figure 4.  Contrast of advanced model and Seah model at different values of x

    表  1  Seah模型中计算Q的相关系数

    Table  1.   Correlation coefficients for calculation of Q in Seah model

    离子 a b c d e f
    Ar+ 0.020 6 15.483 19.83 0.022 1 16 50
    Xe+ 0.029 6 9.729 29.52 0.018 8 30 50
    下载: 导出CSV

    表  2  不同模型对于Ar+法向轰击SiO2实验数据的拟合

    Table  2.   Fitting of experimental data of SiO2 bombarded at normal incidence by Ar+ using different models

    拟合结果 Pencil模型 Seah模型 本文改进模型
    RMSE 0.040 0 0.037 3 0.036 9
    R 0.764 3 0.798 7 0.803 7
    下载: 导出CSV

    表  3  不同模型对于Xe+法向轰击SiO2实验数据的拟合

    Table  3.   Fitting of experimental data of SiO2 bombarded at normal incidence by Xe+ using different models

    拟合结果 Pencil模型 Seah模型 本文改进模型
    RMSE 0.029 1 0.034 3 0.023 2
    R 0.635 5 0.410 9 0.788 2
    下载: 导出CSV
  • [1] SIGMUND P.Theory of sputtering.I:Sputtering yield of amorphous and polycrystalline targets[J].Physical Review, 1969, 184(2):383-416. doi: 10.1103/PhysRev.184.383
    [2] 计京津. 稀薄等离子体羽流的溅射效应研究[D]. 上海: 上海交通大学, 2011: 3-9. https://wuxizazhi.cnki.net/lunwen-1011268095.html

    JI J J.Study of rarefied plasma plume sputtering effect[D].Shanghai:Shanghai Jiao Tong University, 2011:3-9(in Chinese). https://wuxizazhi.cnki.net/lunwen-1011268095.html
    [3] BOYD I D, FALK M L.A review of spacecraft material sputtering by Hall thruster plumes:AIAA-2001-3353[R].Reston:AIAA, 2001.
    [4] SEAH M P, NUNNEY T S.Sputtering yields of compounds using argon ions[J].Journal of Physics D:Applied Physics, 2010, 43(25):253001. doi: 10.1088/0022-3727/43/25/253001
    [5] BOHDANSKY J, ROTH J, BAY H L.An analytical formula and important parameters for low-energy ion sputtering[J].Journal of Applied Physics, 1980, 51(5):2861-2865. doi: 10.1063/1.327954
    [6] KELLY R, LAM N Q.The sputtering of oxides.Part I:A survey of the experimental results[J].Radiation Effects, 1973, 19(1):39-48. doi: 10.1080/00337577308232213
    [7] PENCIL E J, RANDOLPH T, MANZELLA D H.End-of-life stationary plasma thruster far-field plume characterization:AIAA-1996-2709[R].Reston:AIAA, 1996.
    [8] YAMAMURA Y, TAWARA H.Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence[J].Atomic Data and Nuclear Data Tables, 1996, 62(2):149-253. doi: 10.1006/adnd.1996.0005
    [9] ROSENBERG D, WEHNER G K.Sputtering yields for low energy He+, Kr+, and Xe+ ion bombardment[J].Journal of Applied Physics, 1962, 33(5):1842-1845. doi: 10.1063/1.1728843
    [10] BACH H.Ion beam sputtering of silicate glasses and oxides[J].Journal of Non-Crystalline Solids, 1988, 102(1):36-42. http://www.sciencedirect.com/science/article/pii/002230938890110X
    [11] SEAH M P, CLIFFORD C A, GREEN F M, et al.An accurate semi-empirical equation for sputtering yields.I:For argon ions[J].Surface and Interface Analysis, 2005, 37(5):444-458. doi: 10.1002/(ISSN)1096-9918
    [12] MATSUNAMI N, YAMAMURA Y, ITIKAWA Y, et al.Energy dependence of the ion-induced sputtering yields of monatomic solids[J].Atomic Data and Nuclear Data Tables, 1984, 31(1):1-80. doi: 10.1016/0092-640X(84)90016-0
    [13] SEAH M P.An accurate semi-empirical equation for sputtering yields.Ⅱ:For neon, argon and xenon ions[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2005, 229(3):348-358.
    [14] YAMAMURA Y.Contribution of anisotropic velocity distribution of recoil atoms to sputtering yields and angular distributions of sputtered atoms[J].Radiation Effects, 1981, 55(1-2):49-55. doi: 10.1080/00337578108225465
    [15] MALHERBE J B.Sputtering of compound semiconductor surfaces.I.Ion-solid interactions and sputtering yields[J].Critical Reviews in Solid State and Material Sciences, 1994, 19(2):55-127. doi: 10.1080/10408439408244588
    [16] DAVIDSE P D, MAISSEL L I.Equivalent dc sputtering yields of insulators[J].Journal of Vacuum Science and Technology, 1967, 4(1):33-36. doi: 10.1116/1.1492514
    [17] JORGENSON G V, WEHNER G K.Sputtering studies of insulators by means of Langmuir probes[J].Journal of Applied Physics, 1965, 36(9):2672-2674. doi: 10.1063/1.1714558
    [18] CANTAGREL M, MARCHAL M.Argon ion etching in a reactive gas[J].Journal of Materials Science, 1973, 8(12):1711-1716. doi: 10.1007/BF02403521
    [19] TU Y Y, CHUANG T J, WINTERS H F.Chemical sputtering of fluorinated silicon[J].Physical Review B, 1981, 23(2):823-835. doi: 10.1103/PhysRevB.23.823
    [20] MOGI K, OGIWARA T, SUZUKI M.Sputter etching rate ratio of Si to SiO2 using Mesh-Replica method[J].Journal of Surface Analysis, 2002, 9(4):514-523. doi: 10.1384/jsa.9.514
    [21] TARTZ M, HEYN T, BUNDESMANN C, et al.Measuring sputter yields of ceramic materials[C]//Proceedings of the 31st International Electric Propulsion Conference.Fairview Park:ERPS, 2009:IEPC-2009-240.
    [22] YALIN A P, SURLA V, FARNELL C, et al.Sputtering studies of multi-component materials by weight loss and cavity ring-down spectroscopy:AIAA-2006-4338[R].Reston:AIAA, 2006. http://www.engr.colostate.edu/lpdl/publications.html
    [23] YALIN A P, RUBIN B, DOMINGUE S R, et al.Differential sputter yields of boron nitride, quartz, and kapton due to low energy Xe bombardment:AIAA-2007-5314[J].Reston:AIAA, 2007. http://www.engr.colostate.edu/ionstand/publications/papers/AIAA-2007-5314.pdf
    [24] TONDU T, CHARDON J P, ZURBACH S.Sputtering yield of potential ceramics for Hall effect thruster discharge channel[C]//Proceedings of the 32nd International Electric Propulsion Conference.Fairview Park:ERPS, 2011:IEPC-2011-106.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  814
  • HTML全文浏览量:  65
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-18
  • 录用日期:  2016-10-28
  • 网络出版日期:  2017-09-20

目录

    /

    返回文章
    返回
    常见问答