留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚拟域预测控制的轨迹跟踪方法

樊钰 闫梁 朱武宣 白广周

樊钰, 闫梁, 朱武宣, 等 . 基于虚拟域预测控制的轨迹跟踪方法[J]. 北京航空航天大学学报, 2017, 43(9): 1813-1823. doi: 10.13700/j.bh.1001-5965.2016.0751
引用本文: 樊钰, 闫梁, 朱武宣, 等 . 基于虚拟域预测控制的轨迹跟踪方法[J]. 北京航空航天大学学报, 2017, 43(9): 1813-1823. doi: 10.13700/j.bh.1001-5965.2016.0751
FAN Yu, YAN Liang, ZHU Wuxuan, et al. Trajectory tracking method based on predictive control in virtual domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1813-1823. doi: 10.13700/j.bh.1001-5965.2016.0751(in Chinese)
Citation: FAN Yu, YAN Liang, ZHU Wuxuan, et al. Trajectory tracking method based on predictive control in virtual domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1813-1823. doi: 10.13700/j.bh.1001-5965.2016.0751(in Chinese)

基于虚拟域预测控制的轨迹跟踪方法

doi: 10.13700/j.bh.1001-5965.2016.0751
基金项目: 国家“863”计划
详细信息
    作者简介:

    樊钰  男, 硕士研究生; 主要研究方向:轨迹跟踪

    闫梁  男, 博士; 主要研究方向:航天任务分析与设计

    朱武宣  男, 学士, 研究员; 主要研究方向:飞行器测控总体

    白广周  男, 学士, 研究员; 主要研究方向:飞行器测控总体

    通讯作者:

    闫梁, E-mail:yanliangbj@163.com

  • 中图分类号: V412.1;TB553

Trajectory tracking method based on predictive control in virtual domain

Funds: National High-tech Research and Development Program of China
More Information
  • 摘要:

    针对在线轨迹实时规划算法,提出了一种基于虚拟域预测控制的轨迹跟踪方法。该方法采用多项式近似系统模型,引入虚拟路径及反动力解算方法,将时域转化为虚拟域,较在时域上近似模型的控制方法解耦效果好,实时性强。通过反动力学解算、非线性规划的输入设置可直接得到连续的控制量,相对于传统非线性预测控制的软约束的方法,从根本上保证了控制量的连续性。以拦截弹道导弹为背景,在初始状态量添加小扰动及末端条件改变的条件下,进行仿真验证。结果表明:与非线性反馈跟踪方法相比,曲线平滑,在遭遇点脱靶量、末端路径倾角及偏角误差较小,实时性同样可满足控制需求。

     

  • 图 1  控制器实现流程图

    Figure 1.  Flowchart of controller realization

    图 2  τ域内滚动优化策略

    Figure 2.  Rolling optimization strategy in domain τ

    图 3  轨迹跟踪控制结构

    Figure 3.  Control architecture of trajectory tracking

    图 4  拦截弹轨迹

    Figure 4.  Trajectories of interceptor

    图 5  拦截弹路径倾角、路径偏角、速度、侧向过载及法向过载变化

    Figure 5.  Trajectory angle, yaw angle, velocity, side load and normal load variation of interceptor

    图 6  遭遇点位置改变时的拦截弹轨迹

    Figure 6.  Trajectories of interceptor when point of encounter is changed

    图 7  遭遇点位置改变时的拦截弹路径倾角、路径偏角、速度、侧向过载及法向过载变化

    Figure 7.  Trajectory angle, yaw angle, velocity, side load and normal load variation of interceptor when point of encounter position is changed

    表  1  拦截弹初始条件

    Table  1.   Initial conditions for interceptor

    参数 数值
    位置(x, y, z)/km (100, 100, 8.460)
    V/(m·s-1) 566
    γ/(°) 0
    ψ/(°) -133
    下载: 导出CSV

    表  2  拦截弹末端条件

    Table  2.   Final conditions for interceptor

    参数 数值
    (x, y, z)/km (20.533, 0, 29.216)
    γ/(°) 0
    ψ/(°) -107.647
    下载: 导出CSV

    表  3  初始小扰动及终端输出误差

    Table  3.   Different initial minor disturbances and corresponding output errors at end of interception

    方案 (x, y, z)/km V/(m·s-1) γ/(°) ψ/(°) 脱靶量/m Eγ/(°) Eψ/(°) CPU计算时间/s
    1 (105, 105, 8.883)(+5%) 566 0 -133 0.231 0.119 0.163 0.011 5
    2 (100, 100, 8.460) 594.3(+5%) 0 -133 0.437 0.147 0.203 0.014 5
    3 (100, 100, 8.460) 566 2 -133 0.195 0.298 0.097 0.013 7
    4 (100, 100, 8.460) 566 0 -130.3(+2%) 0.275 0.147 0.359 0.013 9
    5 (105, 105, 8.883)(+5%) 594.3(+5%) 2 -130.3(+2%) 0.493 0.510 0.529 0.015 2
    FL[20] (105, 105, 8.883)(+5%) 594.3(+5%) 2 -130.3(+2%) 1.543 1.589 1.641 0.009 2
    下载: 导出CSV

    表  4  遭遇点位置改变及终端输出误差

    Table  4.   Changes of point encounter position and corresponding output errors at end of interception

    方案 时间/s 拦截弹位置/km 目标位置/km 脱靶量/m Eγ/(°) Eψ/(°)
    1 3 (104.383, 104.337, 8.481) (20, 0, 29) 0.193 0.119 0.163
    2 20.1 (76.923, 77.943, 11.649) (14.6, 0, 20) 0.165 0.127 0.161
    3 30.8 (45.648, 50.222, 18.144) (11, 0, 15) 0.183 0.115 0.174
    下载: 导出CSV
  • [1] HALBE O, RAJA R G, PADHI R.Robust reentry guidance of a reusable launch vehicle using model predictive static programming[J].Journal of Guidance, Control, and Dynamics, 2013, 37(1):134-148. doi: 10.2514/1.61615
    [2] HARL N, BALAKRISHNAN S N.Reentry terminal guidance through sliding mode control[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1):186-199. doi: 10.2514/1.42654
    [3] 闫梁, 赵继广, 李辕.带约束碰撞角的顺/逆轨制导律设计[J].北京航空航天大学学报, 2015, 41(5):857-863. http://bhxb.buaa.edu.cn/CN/abstract/abstract13246.shtml

    YAN L, ZHAO J G, LI Y.Guidance law with angular constraints for head-pursuit or head-on engagement[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):857-863(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13246.shtml
    [4] TANAKA A, MAEDA H.Studies on the time-to-go indexing control scheme for an automatic aircraft landing system[J].Transactions of the Japan Society for Aeronautical and Space Sciences, 1973, 16(31):1-18.
    [5] YAKIMENKO O A.Shortcut-time spatial trajectories on-board optimization and their cognitive head-up display visualization for pilot's control actions during manoeuvring support[C]//International Congress on Instrumentation in Aerospace Simulation Facilities, 1997.Piscataway, NJ:IEEE Press, 1997:246-256.
    [6] JUNG Y C, HESS R A.Precise flight-path control using a predictive algorithm[J].Journal of Guidance, Control, and Dynamics, 1991, 14(5):936-942. doi: 10.2514/3.20734
    [7] GIBBENS P W, MEDAGODA E D B.Efficient model predictive control algorithm for aircraft[J].Journal of Guidance, Control, and Dynamics, 2011, 34(6):1909-1915. doi: 10.2514/1.52162
    [8] LU P, PIERSON B L.Aircraft terrain following based on a nonlinear continuous predictive control approach[J].Journal of Guidance, Control, and Dynamics, 1995, 18(4):817-823. doi: 10.2514/3.21464
    [9] LUKACS J A I, YAKIMENKO O A.Trajectory-shaping guidance for interception of ballistic missiles during the boost phase[J].Journal of Guidance, Control, and Dynamics, 2008, 31(5):1524-1531. doi: 10.2514/1.32262
    [10] DWIVEDI P N, BHATTACHARYA A, PADHI R.Suboptimal midcourse guidance of interceptors for high-speed targets with alignment angle constraint[J].Journal of Guidance, Control, and Dynamics, 2011, 34(3):860-877. doi: 10.2514/1.50821
    [11] LU Z L.Ballistic missile interception from UCAV[D].Monterey:Naval Postgraduate School, 2011.
    [12] GUO Y, HAWKINS M, WIE B.Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for mars landing[J].Journal of Guidance, Control, and Dynamics, 2013, 36(3):799-809. doi: 10.2514/1.58098
    [13] YU Z, CUI P, ZHU S.Observability-based beacon configuration optimization for mars entry navigation[J].Journal of Guidance, Control, and Dynamics, 2014, 38(4):643-650. doi: 10.2514%2F1.G000014
    [14] BLACKMORE L, ACIKMESE B, SCHARF D P.Minimum-landing-error powered-descent guidance for Mars landing using convex optimization[J].Journal of Guidance, Control, and Dynamics, 2010, 33(4):1161-1171. doi: 10.2514/1.47202
    [15] KLUEVER C A.Entry guidance performance for Mars precision landing[J].Journal of Guidance, Control, and Dynamics, 2008, 31(6):1537-1544. doi: 10.2514/1.36950
    [16] SHEN H, SEYWALD H, POWELL R W.Desensitizing the minimum-fuel powered descent for Mars pinpoint landing[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1):108-115. doi: 10.2514/1.44649
    [17] WINGROVE R C.Survey of atmosphere re-entry guidance and control methods[J].AIAA Journal, 1963, 1(9):2019-2029. doi: 10.2514/3.1987
    [18] 闫梁, 李辕, 赵继广, 等.基于变节点虚拟域动态逆的轨迹实时优化[J].航空学报, 2013, 34(12):2794-2803. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201312018.htm

    YAN L, LI Y, ZHAO J G, et al.Trajectory real-time optimization based on variable node inverse dynamics in the virtual domain[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2794-2803(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201312018.htm
    [19] ROENNEKE A J, CORNWELL P J.Trajectory control for a low-lift re-entry vehicle[J].Journal of Guidance, Control, and Dynamics, 1993, 16(5):927-933. doi: 10.2514/3.21103
    [20] BHARADWAJ S, RAO A V, MEASE K D.Entry trajectory tracking law via feedback linearization[J].Journal of Guidance, Control, and Dynamics, 1998, 21(5):726-732. doi: 10.2514/2.4318
    [21] LU P.Entry guidance and trajectory control for reusable launch vehicle[J].Journal of Guidance, Control, and Dynamics, 1997, 20(1):143-149. doi: 10.2514/2.4008
    [22] LU P, HANSON J M.Entry guidance for the X-33 vehicle[J].Journal of Spacecraft and Rockets, 1998, 35(3):342-349. doi: 10.2514/2.3332
    [23] JOOS A, MULLER M A, BAUMGARTNER D, et al.Nonlinear predictive control based on time-domain simulation for automatic landing:AIAA-2011-6298[R].Reston:AIAA, 2011.
    [24] CHEN H, ALLGÖWER F.Quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability[J].Automatica, 1998, 34(10):1205-1217. doi: 10.1016/S0005-1098(98)00073-9
    [25] CHEN H, ALLGÖWER F.Computationally attractive nonlinear predictive control scheme with guaranteed stability for stable systems[J].Journal of Process Control, 1998, 8(5-6):475-485. doi: 10.1016/S0959-1524(98)00021-3
    [26] SLEGERS N, KYLE J, COSTELLO M.Nonlinear model predictive control technique for unmanned air vehicles[J].Journal of Guidance, Control, and Dynamics, 2006, 29(5):1179-1188. doi: 10.2514/1.21531
    [27] HESS R A, JUNG Y C.Application of generalized predictive control to rotorcraft terrain-following flight[J].IEEE Transactions on Systems, Man and Cybernetics, 1989, 19(5):955-962. doi: 10.1109/21.44010
    [28] YAKIMENKO O A.Direct method for rapid prototyping of near-optimal aircraft trajectories[J].Journal of Guidance, Control, and Dynamics, 2000, 23(5):865-875. doi: 10.2514/2.4616
    [29] BASSET G, XU Y, YAKIMENKO O A.Computing short-time aircraft maneuvers using direct methods[J].Journal of Computer and Systems Sciences International, 2010, 49(3):481-513. doi: 10.1134/S1064230710030159
    [30] BOYARKO G A, ROMANO M, YAKIMENKO O A.Time-optimal reorientation of a spacecraft using an inverse dynamics optimization method[J].Journal of Guidance, Control, and Dynamics, 2011, 34(4):1197-1208. doi: 10.2514/1.49449
    [31] LEW J, JUANG J.Robust generalized predictive control with uncertainty quantification[J].Journal of Guidance, Control, and Dynamics, 2012, 35(3):930-937. doi: 10.2514/1.54510
    [32] AVANZINI G, THOMSON D, TORASSO A.Model predictive control architecture for rotorcraft inverse simulation[J].Journal of Guidance, Control, and Dynamics, 2012, 36(1):207-217.
    [33] SUN L, HEDENGREN J D, BEARD R W.Optimal trajectory generation using model predictive control for aerially towed cable systems[J].Journal of Guidance, Control, and Dynamics, 2014, 37(2):525-539. doi: 10.2514/1.60820
    [34] 李辕, 赵继广, 闫梁, 等.拦截高速机动目标三维联合比例制导律设计[J].北京航空航天大学学报, 2015, 41(5):825-834. http://bhxb.buaa.edu.cn/CN/abstract/abstract13242.shtml

    LI Y, ZHAO J G, YAN L, et al.United-proportional-navigation law for interception of high-speed maneuvering targets[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):825-834(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13242.shtml
    [35] TANG W, CAI Y.Predictive functional control-based missile autopilot design[J].Journal of Guidance, Control, and Dynamics, 2012, 35(5):1450-1455. doi: 10.2514/1.56329
    [36] LUO Y, SERRANI A, YURKOVICH S, et al.Model-predictive dynamic control allocation scheme for reentry vehicles[J].Journal of Guidance, Control, and Dynamics, 2007, 30(1):100-113. doi: 10.2514/1.25473
    [37] WILLIAMS P.Libration control of electrodynamic tethers using predictive control with time-delayed feedback[J].Journal of Guidance, Control, and Dynamics, 2009, 32(4):1254-1268. doi: 10.2514/1.41039
    [38] ARDEMA M D.Solution of the minimum time-to-climb problem by matched asymptotic expansions[J].AIAA Journal, 1976, 14(7):843-850. doi: 10.2514/3.7161
    [39] KUO Z, LIU K.Explicit guidance of aeroassisted orbital transfer using matched asymptotic expansions[J].Journal of Guidance, Control, and Dynamics, 2002, 25(1):80-87. doi: 10.2514/2.4852
    [40] 李辕, 赵继广, 白国玉, 等.基于预测碰撞点的剩余飞行时间估计方法[J].北京航空航天大学学报, 2016, 42(8):1667-1674. http://bhxb.buaa.edu.cn/CN/abstract/abstract13404.shtml

    LI Y, ZHAO J G, BAI G Y, et al.Method of time-to-go estimation based on predicted crack point[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1667-1674(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13404.shtml
    [41] CARTER J P, PERLMUTTER L D.Reference trajectory re-entry guidance without prelaunch data storage[J].Journal of Spacecraft and Rockets, 1965, 2(6):967-970. doi: 10.2514/3.28325
    [42] TANNAS J L E.Manual entry guidance[J].Journal of Spacecraft and Rockets, 1966, 3(2):175-181. doi: 10.2514/3.28415
    [43] LEAVITT J A, MEASE K D.Feasible trajectory generation for atmospheric entry guidance[J].Journal of Guidance, Control, and Dynamics, 2007, 30(2):473-481. doi: 10.2514/1.23034
    [44] KLUEVER C A.Entry guidance using analytical atmospheric skip trajectories[J].Journal of Guidance, Control, and Dynamics, 2008, 31(5):1531-1535. doi: 10.2514/1.32314
    [45] JOSHI A, SIVAN K, AMMA S S.Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles[J].Journal of Guidance, Control, and Dynamics, 2007, 30(5):1307-1318. doi: 10.2514/1.26306
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  799
  • HTML全文浏览量:  113
  • PDF下载量:  684
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-20
  • 录用日期:  2016-10-14
  • 网络出版日期:  2017-09-20

目录

    /

    返回文章
    返回
    常见问答