-
摘要:
为了提高翼伞的飞行性能,需要研究伞衣织物透气性对翼伞气动特性的影响。使用不可压雷诺时均Navier-Stokes(RANS)方程模拟伞衣外部流场,建立了包含附加动量源项的多孔介质域控制方程模拟伞衣,对2种透气性材料模型和无透气性影响传统模型的气动特性和流场分布进行了二维和三维定常数值模拟。数值结果表明,求解多孔介质域控制方程可以得到较准确的伞衣透气速度,伞衣表面的湍流度急剧增加;使用较大透气量材料制作伞衣时,升力系数大幅下降,阻力系数大幅上升,同时会造成内腔泄压影响翼伞的外形保持;使用微透气量材料制作伞衣时,升力系数在小迎角时小于不透气模型,在大迎角时大于不透气模型,较小的透气速度能在大迎角时延缓边界层分离。
Abstract:In order to enhance the flight performance of parafoil, the effects of canopy fabric's air permeability on parafoil aerodynamic performance were studied. The canopy external flow field was modeled by the incompressible Reynolds-averaged Navier-Stokes (RANS) equations, and the governing equations for porous medium domain with an additional momentum source term were established to model the canopy. For two material models with air permeability and one traditional model without air permeability, the aerodynamic characteristics and distribution of the two-dimensional and three-dimensional flow field were numerically simulated under steady condition. The results indicate that the canopy seepage velocity is available by solving the governing equations of porous medium domain, and the canopy external turbulivity increases sharply. The lift coefficient decreases and drag coefficient increases significantly when the canopy is made of large air permeability fabric, and furthermore the inner cavity pressure dropping affects the aerodynamic shape maintaining of parafoil. The lift coefficient is less than that in impermeable case at small angle of attack, and is greater than that in impermeable case at large angle of attack when the canopy is made of slight air permeability fabric because mild seepage velocity can delay the boundary layer separation at large angle of attack.
-
Key words:
- parafoil /
- air permeability /
- porous medium domain /
- numerical simulation /
- aerodynamic performance
-
表 1 2种材料的透气性参数
Table 1. Air permeability parameters of two materials
材料 a/(kg·
(m2·s)-1)b/(kg·
m-3)C1/m2 C2/m-1 411蚕丝绸 451.8 90.69 7.9×10-12 7.4×105 F111织物 9 036 1 813.8 3.95×10-13 1.48×107 -
[1] LINGARD J.The aerodynamics of gliding parachutes:A88-11201[R].London:RAS, 1986. [2] JANN T.Aerodynamic coefficients for a parafoil wing with arc anhedral-theoretical and experimental results:AIAA-2003-2106[R].Reston:AIAA, 2003. [3] 张顺玉, 秦子增, 张晓今.可控翼伞气动力及雀降操纵力仿真计算[J].国防科技大学学报, 1999, 21(3):21-24. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ903.005.htmZHANG S Y, QIN Z Z, ZHANG X J.The calculation of aerodynamics and flare control force for controlled parafoil[J].Journal of National University of Defense Technology, 1999, 21(3):21-24(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ903.005.htm [4] MATOS C, MAHALINGAM R, OTTINGER G, et al.Wind tunnel measurements of parafoil geometry and aerodynamics[C]//36th AIAA Aerospace Sciences Meeting.Reston:AIAA, 1998:1-11. [5] 贺卫亮.利用风洞试验研究冲压翼伞的升阻特性[J].航空学报, 1999, 20(增刊):75-77. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB9S1.027.htmHE W L.Study on lift-drag characteristic of ram air parachute in wind tunnel[J].Acta Aeronautica et Astronautica Sinica, 1999, 20(Sup.):75-77(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB9S1.027.htm [6] 战培国. 翼型伞风洞测力技术及工程估算方法研究[D]. 成都: 四川大学, 2004. http://www.doc88.com/p-1116568662646.htmlZHAN P G.The wind tunnel test technique and aerodynamic characteristics evaluation research on ram air parawings[D].Chengdu:Sichuan University, 2004(in Chinese). http://www.doc88.com/p-1116568662646.html [7] BALAJI R, MITTAL S, RAI A K.Effect of leading edge cut on the aerodynamics of ram-air parachutes[J].International Journal for Numerical Methods in Fluids, 2005, 47(1):1-17. doi: 10.1002/(ISSN)1097-0363 [8] 李健.前缘切口对冲压式翼伞的气动力影响[J].航天返回与遥感, 2005, 26(1):36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200501008.htmLI J.The aerodynamic influence of the cutter of the front edge of parafoil[J].Spacecraft Recovery & Remote Sensing, 2005, 26(1):36-41(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200501008.htm [9] 李扬. 冲压式翼伞后缘下拉气动特性的数值研究[D]. 长沙: 国防科技大学, 2004. http://cdmd.cnki.com.cn/Article/CDMD-90002-2005014332.htmLI Y.Numerical simulation of ram-air parachutes with flap deflection[D].Changsha:National University of Defense Technology, 2004(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90002-2005014332.htm [10] MOHAMMADI M A, JOHARI H.Computation of flow over a high-performance parafoil canopy[J].Journal of Aircraft, 2010, 47(4):1338-1345. doi: 10.2514/1.47363 [11] 朱旭, 曹义华.翼伞平面形状对翼伞气动性能的影响[J].航空学报, 2011, 32(11):1998-2007. http://youxian.cnki.com.cn/yxdetail.aspx?filename=BJHK201710010&dbname=CJFDPREPZHU X, CAO Y H.Numerical simulation of platform geometry effect on parafoil aerodynamic performance[J].Acta Aeronauticaet Astronautica Sinica, 2011, 32(11):1998-2007(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=BJHK201710010&dbname=CJFDPREP [12] CAO Y H, ZHU X.Effects of characteristic geometric parameters on parafoil lift and drag[J].Aircraft Engineering and Aerospace Technology, 2013, 85(4):280-292. doi: 10.1108/AEAT-Jun-2011-0096 [13] 朱旭, 曹义华.翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响[J].航空学报, 2012, 33(7):1189-1200. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207005.htmZHU X, CAO Y H.Effects of arc-anhedral angle, airfoil and leading edge cut on parafoil aerodynamic performance[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1189-1200(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207005.htm [14] 张春, 杨倩, 袁蒙, 等.冲压翼伞流场与气动操纵特性的数值模拟[J].航空动力学报, 2013, 28(9):2037-2043. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201309020.htmZHANG C, YANG Q, YUAN M, et al.Numerical simulation of flow field and hangding aerodynamic characteristics of ram-air parachute[J].Journal of Aerospace Power, 2013, 28(9):2037-2043(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201309020.htm [15] KALRO V, TEZDUYAR T.A parallel 3D computational method for fluid-structure interactions in parachute systems[J].Computer Methods in Applied Mechanics and Engineering, 2000, 190(3-4):321-332. doi: 10.1016/S0045-7825(00)00204-8 [16] 汪龙芳, 贺卫亮.基于索膜有限元模型的翼伞气动变形仿真[J].北京航空航天大学学报, 2017, 43(1):47-52. http://bhxb.buaa.edu.cn/CN/abstract/abstract13924.shtmlWANG L F, HE W L.Parafoil aerodynamic deformation simulation based on cable-membrane finite element model[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):47-52(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13924.shtml [17] 李万平.计算流体力学[M].武汉:华中科技大学出版社, 2004.LI W P.Computational fluid mechanics[M].Wuhan:Huazhong University of Science and Technology Press, 2004(in Chinese). [18] 王利荣.降落伞理论与应用[M].北京:宇航出版社, 1997.WANG L R.The theory and application of parachutes[M].Beijing:China Astronautic Publishing House, 1997(in Chinese). [19] HAN Y H, WANG Y W, YANG C X.Numerical methods for analyzing the aerodynamic characteristics of cross parachute with permeability[C]//Aerodynamic Decelerator Systems Technology Conference.Reston:AIAA, 2013:1-14. [20] 马衍富.降落伞织物的透气性[J].产业用纺织品, 1987, 5(1):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-CYYF198701003.htmMA Y F.Permeability of parachute fabic[J].Industrial Fabric, 1987, 5(1):26-30(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CYYF198701003.htm [21] DESABRAIS K J, BERGERON K, NYREN D, et al.Aerodynamic investigations of a ram-air parachute canopy and an airdrop system[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conferences.Reston:AIAA, 2015:1-17. [22] 杨雪, 余莉, 李允伟, 等.环帆伞稳降阶段织物透气性影响数值模拟[J].空气动力学学报, 2015, 33(5):714-719. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505021.htmYANG X, YU L, LI Y W, et al.Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J].Acta Aerodynamic Sinica, 2015, 33(5):714-719(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505021.htm