留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜻蜓爬升过程间歇性拍动飞行现象的数值研究

刘佳佳 郑孟宗 潘天宇 李秋实

刘佳佳, 郑孟宗, 潘天宇, 等 . 蜻蜓爬升过程间歇性拍动飞行现象的数值研究[J]. 北京航空航天大学学报, 2017, 43(10): 2118-2126. doi: 10.13700/j.bh.1001-5965.2016.0766
引用本文: 刘佳佳, 郑孟宗, 潘天宇, 等 . 蜻蜓爬升过程间歇性拍动飞行现象的数值研究[J]. 北京航空航天大学学报, 2017, 43(10): 2118-2126. doi: 10.13700/j.bh.1001-5965.2016.0766
LIU Jiajia, ZHENG Mengzong, PAN Tianyu, et al. Numerical study on intermittent flapping flight performance of dragonfly during climbing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2118-2126. doi: 10.13700/j.bh.1001-5965.2016.0766(in Chinese)
Citation: LIU Jiajia, ZHENG Mengzong, PAN Tianyu, et al. Numerical study on intermittent flapping flight performance of dragonfly during climbing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2118-2126. doi: 10.13700/j.bh.1001-5965.2016.0766(in Chinese)

蜻蜓爬升过程间歇性拍动飞行现象的数值研究

doi: 10.13700/j.bh.1001-5965.2016.0766
基金项目: 

北京航空航天大学研究生创新实践基金 YCSJ-01-2016-06

详细信息
    作者简介:

    刘佳佳  女, 硕士研究生。主要研究方向:非定常气体动力学

    潘天宇  男, 博士。主要研究方向:流动稳定性

    通讯作者:

    潘天宇, E-mail: pantianyu@buaa.edu.cn

  • 中图分类号: V211.7

Numerical study on intermittent flapping flight performance of dragonfly during climbing

Funds: 

Innovation and Practice Fund for Graduate Student of Beihang YCSJ-01-2016-06

More Information
  • 摘要:

    采用数值模拟方法研究了蜻蜓双翼做间歇性拍动运动时的气动特征。计算结果表明,在所研究的雷诺数工况下(Re=157),模型翼的平均升力系数和平均推力系数随着间歇占比的增大而减小,前段下降较快,中段下降平缓,后段下降至零。其中平均推力系数受到的影响相对平均升力系数更大,当连续飞行转变为间歇性飞行时,短暂滑翔初期和短暂滑翔稳定阶段均大幅削弱推力系数,共占42.7%;而对于升力系数,短暂滑翔稳定期对升力系数的削弱作用很大,占41.4%,但短暂滑翔初期却对平均升力系数的提高贡献8%。间歇拍动飞行能够提高蜻蜓飞行的升推比,当滑翔时长占间歇飞行周期之比为0.3时,平均升推比接近为1。

     

  • 图 1  圆柱在计算域中的相对位置

    Figure 1.  Relative position of circular cylinder in computational domain

    图 2  圆柱绕流阻力系数对比

    Figure 2.  Comparison of drag coefficient of flow around a circular cylinder

    图 3  单翼在一个周期内的扑翼规律

    Figure 3.  Wing flapping law of single wing in a stroke

    图 4  φ为0°时拍动幅度Φ和翻转角α在一个周期内随时间变化运动函数

    Figure 4.  Time-dependent motion function of flapping amplitude Φ and pitching angle α in a stroke (φ=0°)

    图 5  蜻蜓爬升过程中翼面拍动幅度随时间变化曲线

    Figure 5.  Time-dependent flapping amplitude of dragonfly wings during climbing

    图 6  平均力系数随间歇占比的变化

    Figure 6.  Variation of average force coefficient with different gliding time proportions

    图 7  不同间歇占比的间歇拍动飞行的瞬时推力系数

    Figure 7.  Time-dependent thrust coefficient with different gliding time proportions of intermittent flapping flight

    图 8  不同间歇占比的间歇拍动飞行的瞬时推力系数在t/T∈(0, 1) 期间的变化规律对比

    Figure 8.  Comparison of change laws of time-dependent thrust coefficient with different gliding time proportions of intermittent flapping flight during t/T∈(0, 1)

    图 9  不同间歇占比的间歇拍动飞行的瞬时推力系数在t/T∈(2, 3) 期间的变化规律对比

    Figure 9.  Comparison of change laws of time-dependent thrust coefficient with different gliding time proportions of intermittent flapping flight during t/T∈(2, 3)

    图 10  不同间歇占比的间歇拍动飞行的瞬时升力系数

    Figure 10.  Time-dependent lift coefficient with different gliding time proportions of intermittent flapping flight

    图 11  不同间歇占比的间歇拍动飞行的瞬时升力系数在t/T∈(0, 1) 期间的变化规律对比

    Figure 11.  Comparison of change laws of time-dependent lift coefficient with different gliding time proportions of intermittent flapping flight during t/T∈(0, 1)

    图 12  不同间歇占比的间歇拍动飞行的瞬时升力系数在t/T∈(2, 3) 期间的变化规律对比

    Figure 12.  Comparison of change laws of time-dependent lift coefficient with different gliding time proportions of intermittent flapping flight during t/T∈(2, 3)

    图 13  平均升推比随间歇占比的变化

    Figure 13.  Variation of average lift-thrust ratio with different gliding time proportions

    表  1  Re=25圆柱绕流流场细节对比

    Table  1.   Comparison of flow field details around a circular cylinder at Re=25

    结果来源尾迹
    长度
    尾迹最宽处
    x轴坐标
    尾涡中心
    x轴坐标
    两尾涡中心点的
    y方向距离
    本文1.200.891.040.42
    Gresho[15]1.150.810.880.47
    Saiki[16]1.411.030.50
    Coutanceau[17]1.220.850.940.51
    下载: 导出CSV
  • [1] SUN M.Insect flight dynamics:Stability and control[J].Reviews of Modern Physics, 2014, 86(2):615-646. doi: 10.1103/RevModPhys.86.615
    [2] WEIS-FOGH T.Quick estimates of flight fitness in hovering an-imals, including novelmechanism for lift production[J].Journal of Experimental Biology, 1973, 59(1):169-230.
    [3] ELLINGTON C P, VAN DEN BERG C, WILLMOTT A P.Leading edge vortices in insect flight[J].Nature, 1996, 384(6610):626-630. doi: 10.1038/384626a0
    [4] DICKINSON M H, LEHMANN F O, SANE S P.Wing rotation and the aerodynamic basis of insect flight[J].Science, 1999, 284(5422):1954-1960. doi: 10.1126/science.284.5422.1954
    [5] SUN M, TANG J.Unsteady aerodynamic force generation by a model fruit flywing in flappingmotion[J].Journal of Experimental Biology, 2002, 205(1):55-70. http://www.ncbi.nlm.nih.gov/pubmed/11818412
    [6] AZUMA A, WATANABE T.Flight performance of a dragonfly[J].Journal of Experimental Biology, 1988, 137(1):221-252.
    [7] WAKELING J M, ELLINGTON C P.Dragonfly flight.Ⅱ.Velocities, accelerations and kinematics of flapping flight[J].Journal of Experimental Biology, 1997, 200(3):557-582. https://www.ncbi.nlm.nih.gov/pubmed/9318255
    [8] WAKELING J M, ELLINGTON C P.Dragonfly flight.I.Gliding flight and steady-state aerodynamic forces[J].Journal of Experimental Biology, 1997, 200(3):543-556. http://www.ncbi.nlm.nih.gov/pubmed/9318238
    [9] WAKELING J, ELLINGTON C.Dragonfly flight.Ⅲ.Lift and power requirements[J].Journal of Experimental Biology, 1997, 200(3):583-600. https://www.mendeley.com/research-papers/dragonfly-3-lift-power-requirements/
    [10] WANG Z J, RUSSELL D.Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight[J].Physical Review Letters, 2007, 99(14):12243-12254. https://www.ncbi.nlm.nih.gov/pubmed/17930724
    [11] DONG H, KOEHLER C, LIANG Z, et al.An integrated analysis of a dragonfly in free flight:AIAA-2010-4390[R].Reston:AIAA, 2010.
    [12] 高倩, 郑孟宗, 李志平, 等.蜻蜓爬升过程飞行特征实验研究[J].北京航空航天大学学报, 2016, 42(6):1271-1278. http://bhxb.buaa.edu.cn/CN/abstract/abstract13982.shtml

    GAO Q, ZHENG M Z, LI Z P, et al.Experimental study on flight performance of dragonfly during climbing[J].Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(6):1271-1278(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13982.shtml
    [13] FADLUN E A, VERZICCO R, ORLANDI P, et al.Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J].Journal of Computational Physics, 2000, 161(1):35-60. doi: 10.1006/jcph.2000.6484
    [14] MOHD-YUSOF J.Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries[C]//Annual Research Briefs, 1997:317-327.
    [15] GRESHO P M, CHAN S T, LEE R L, et al.A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations.Part 2:Applications[J].International Journal for Numerical Methods in Fluids, 1984, 4(7):619-640. doi: 10.1002/(ISSN)1097-0363
    [16] SAIKI E M, BIRINGEN S.Numerical simulation of a cylinder in uniform flow:Application of a virtual boundary method[J].Journal of Computational Physics, 1996, 123(2):450-465. doi: 10.1006/jcph.1996.0036
    [17] COUTANCEAU M, BOUARD R.Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation.Part 2.Unsteady flow[J].Journal of Fluid Mechanics, 1977, 79(2):257-272. doi: 10.1017/S0022112077000147
    [18] SILVA L E, SILVEIRA-NETO A, DAMASCENO J J R.Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method[J].Journal of Computational Physics, 2003, 189(2):351-370. doi: 10.1016/S0021-9991(03)00214-6
    [19] PARK J, KWON K, CHOI H.Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160[J].KSME International Journal, 1998, 12(6):1200-1205. doi: 10.1007/BF02942594
    [20] WIESELSBERGER C.New data on the laws of fluid resistance[J].Physikalische Zeitschrift, 1921, 22:321-328.
    [21] RELF E F.An electrical method for tracing stream lines in the two-dimensional motion of a perfect fluid[J].Philosophical Magazine, 1924, 29(285):535-539.
    [22] JANE W Z.Two dimensional mechanism for insect hovering[J].Physical Review Letters, 2000, 85(10):2216-2219. doi: 10.1103/PhysRevLett.85.2216
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  111
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-29
  • 录用日期:  2016-12-16
  • 网络出版日期:  2017-10-20

目录

    /

    返回文章
    返回
    常见问答