-
摘要:
针对航天器在轨服务任务对绕飞技术的要求,研究了航天器受迫绕飞构型设计和控制问题。基于C-W(Clohessy-Wiltshire)方程的解析解,提出了双水滴拼接绕飞构型,并将单脉冲或双脉冲受迫绕飞延展至多脉冲绕飞构型设计;推导了伴随航天器初始状态变量与绕飞构型形状参数的关系,得到了4种构型的解析表达式和脉冲控制策略。通过数值仿真算例验证了设计的4种绕飞构型能够实现伴随航天器的慢速绕飞和快速绕飞,比较了不同绕飞构型的燃料消耗和绕飞距离误差。数值结果表明,双水滴拼接绕飞构型总脉冲最小。研究成果完善了航天器受迫绕飞构型设计与控制的相关理论,为工程应用提供参考。
Abstract:In order to meet the requirements of spacecraft fly-around technology in on-orbit service mission, spacecraft forced fly-around formation design and control scheme was investigated. Based on the analytic solution of the C-W(Clohessy-Wiltshire) equations, bi-teardrop formation was proposed. Then multi-impulse fly-around formations were developed after single-or double-impulse formations. The formula between the initial states of following spacecraft and the shape of fly-around formation was derived, and the analytic expressions of four fly-around formations and the impulse control scheme were proposed. Simulation results verify that four designed formations could be used in spacecraft slow fly-around and fast fly-around scenarios. The total fuel consumptions and distance errors of different formations were compared. Numerical results show that bi-teardrop formation has the smallest total impulse. The theory of spacecraft forced fly-around formation design and control is improved, and the results provide reference for engineering application.
-
Key words:
- on-orbit service /
- forced fly-around /
- C-W equations /
- impulse control /
- formation design
-
表 1 慢速绕飞总脉冲比较
Table 1. Comparison of slow fly-around total impulse
绕飞
构型次数 方向 总脉冲大小/
(m·s-1)单位化脉冲/
(m·s-1·km-1)双椭圆
拼接绕飞2 径向 2.03 0.893 单水滴
绕飞1 径向 1.275 0.891 双水滴
拼接绕飞2 迹向 0.622 0.366 多脉冲
绕飞3 混合 1.299 1.145 表 2 快速绕飞总脉冲比较
Table 2. Comparison of fast fly-around total impulse
冲绕飞
构型次数 方向 总脉冲大小/
(m·s-1)单位化脉冲/
(m·s-1·km-1)双椭圆
拼接绕飞2 径向 2.895 3.019 单水滴
绕飞1 径向 5.79 2.997 双水滴
拼接绕飞2 迹向 2.841 2.00 多脉冲绕飞 3 混合 3.049 3.315 -
[1] WALTZ D M.On-orbit servicing of space systems[M].Malabar:Krieger Publishing Company, 1993:193-227. [2] 崔乃刚, 王平, 郭继峰, 等.空间在轨服务技术发展综述[J].宇航学报, 2007, 28(4):805-811. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170609001&dbname=CAPJ2015CUI N G, WANG P, GUO J F, et al.A review of on-orbit servicing[J].Journal of Astronautics, 2007, 28(4):805-811(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170609001&dbname=CAPJ2015 [3] 陈小前, 袁建平, 姚雯, 等.航天器在轨服务技术[M].北京:中国宇航出版社, 2009:153-168.CHEN X Q, YUAN J P, YAO W, et al.Spacecraft on orbit service technology[M].Beijing:China Aerospace Press, 2009:153-168(in Chinese). [4] SABOL C, BURNS R, MCLAUGHLIN C A.Satellite formation flying design and evolution[J].Journal of Spacecraft and Rockets, 2001, 38(2):270-278. doi: 10.2514/2.3681 [5] CLOHESSY W H, WILTSHIRE R S.Terminal guidance system for satellite rendezvous[J].Journal of the Areospace Sciences, 1960, 27(9):653-658. doi: 10.2514/8.8704 [6] MASUTANI Y, MATSUSHITA M, MIYAZAKI F.Flyaround maneuvers on a satellite orbit by impulsive thrust control[C]//IEEE International Conference on Robotics and Automation.Piscataway, NJ:IEEE Press, 2001:421-426. [7] 赵书阁, 张景瑞.航天器共面圆型快速绕飞控制研究[J].航天控制, 2014, 32(1):68-72. http://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ201401014.htmZHAO S G, ZHANG J R.A study on trajectory control of spacecraft in-plane circular fast fly-around[J].Aerospace Control, 2014, 32(1):68-72(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ201401014.htm [8] 罗建军, 周文勇, 袁建平.卫星快速绕飞轨迹设计与制导[J].宇航学报, 2007, 28(3):628-632. http://youxian.cnki.com.cn/yxdetail.aspx?filename=KZYC20170910027&dbname=CAPJ2015LUO J J, ZHOU W Y, YUAN J P.A general method of trajectory design and guidance for fast satellite circumnavigation[J].Journal of Astronautics, 2007, 28(3):628-632(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=KZYC20170910027&dbname=CAPJ2015 [9] 罗建军, 杨宇和, 袁建平.共面快速受控绕飞轨迹设计与控制[J].宇航学报, 2006, 27(6):1389-1392. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200606053.htmLUO J J, YANG Y H, YUAN J P.Trajectory design and control of in-plane fast controlled flyaround[J].Journal of Astronautics, 2006, 27(6):1389-1392(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200606053.htm [10] 朱彦伟. 航天器近距离相对运动轨迹规划与控制研究[D]. 长沙: 国防科学技术大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-90002-2009213058.htmZHU Y W.Trajectory planning and control for spacecraft proximity relative motion[D].Changsha:National University of Defense Technology, 2009(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90002-2009213058.htm [11] STRAIGHT S D.Maneuver design for fast satellite circumnavigation[D].Dayton:Air Force Institute of Technology, 2004. [12] HOPE A S, TRASK A J.Pulsed thrust method for hover formation flying[J].Advances in the Astronautical Sciences Series, 2003, 116:2423-2434. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030093749.pdf [13] LOVELL T A, TOLLEFSON M V.Calculation of impulsive hovering trajectories via relative orbit elements[J].Advances in the Astronautical Sciences, 2006, 123(3):2533-2548. [14] RAO Y R, YIN J F, HAN C.Hovering formation design and control based on relative orbit elements[J].Journal of Guidance, Control, and Dynamics, 2016, 39(2):360-371. doi: 10.2514/1.G001238 [15] 王功波, 孟云鹤, 郑伟, 等.快速绕飞卫星空间圆编队设计方法[J].宇航学报, 2010, 31(11):2465-2470. doi: 10.3873/j.issn.1000-1328.2010.11.005WANG G B, MENG Y H, ZHENG W, et al.Fast fly around satellite space circle formation design[J].Journal of Astronautics, 2010, 31(11):2465-2470(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.11.005 [16] 朱小龙, 刘迎春, 高扬.航天器最优受控绕飞轨迹推力幅值延拓设计方法[J].力学学报, 2014, 46(5):756-769. http://youxian.cnki.com.cn/yxdetail.aspx?filename=BJHK20170527002&dbname=CAPJ2015ZHU X L, LIU Y C, GAO Y.Thrust-amplitude continuation design approach for solving spacecraft optimal controlled fly-around trajectory[J].Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5):756-769(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=BJHK20170527002&dbname=CAPJ2015 [17] MULLINS L D.Initial value and two point boundary value solutions to the Clohessy-Wiltshire equations[J].Journal of the Astronautical Sciences, 1992, 40(4):487-501. doi: 10.1007%2Fs10569-010-9269-3.pdf