-
摘要:
利用共轴刚性旋翼直升机飞行动力学模型,以XH-59A共轴刚性旋翼直升机为研究对象,分析了旋翼控制相位角对纵向配平特性、需用功率以及上、下旋翼桨毂弯矩的影响。基于分析结果,提出了一种针对共轴刚性旋翼直升机的旋翼控制相位角的配置方法。该配置方法以降低直升机需用功率为目标,并保证上、下旋翼桨毂弯矩和配平特性满足要求。通过该方法能使XH-59A直升机在0~80 m/s的飞行速度范围内满足上、下旋翼最大桨毂弯矩和纵向操纵限幅的要求,并且能最多降低8%的直升机需用功率,为共轴刚性旋翼直升机的设计提供了参考依据。
Abstract:Adopting the flight dynamic model of coaxial rigid rotor helicopter, this paper sets the XH-59A coaxial rigid rotor helicopter as research object and analyzes the influence of rotor control phase angle on longitudinal trim characteristics, helicopter power required and hub bending moment of upper and lower rotor. Based on the analysis results, this paper proposes the allocation method of coaxial rigid rotor helicopter's rotor control phase angle. It aims to decrease the helicopter power required and make upper and lower rotor's hub bending moment and trim characteristics meet the requirement. The method can make the XH-59A helicopter satisfy the requirements of hub bending moment of upper and lower rotor and longitudinal cyclic pitch limitation within the flight speed scope of 0-80 m/s, and can minimize up to 8% power required. This method provides reference for design of coaxial rigid rotor helicopter.
-
参数 数值 旋翼半径/m 5.5 桨叶片数 3×2 预扭角/(°) -10 旋翼速度/(rad·s-1) 36.1 桨叶根梢比 2 一阶挥舞固有频率 1.4Ω 上、下旋翼轴间距/m 0.77 平尾面积/m2 5.57 垂尾面积/m2 2.79 起飞重量/kg 5 500 下旋翼坐标/m (0, 0, -0.89) 重心坐标/m (0, 0, 0) 平尾坐标/m (-6.80, 0, 0.20) 垂尾坐标/m (-6.80, 0, -0.50) -
[1] YEO H, JOHNSON W. Investigation of maximum blade loading capability of lift-offset rotors[J].Journal of the American Helicopter Society, 2014, 59(1):1-12. https://rotorcraft.arc.nasa.gov/Publications/files/Johnson_NASA-lift-offset-Aug11_890.pdf [2] JOHNSON W, MOODIE A M, YEO H.Design and performance of lift-offset rotorcraft for short-haul missions:ARC-E-DAA-TN4611[R].Moffett Field:NASA AMES Research Center, 2012. [3] JOHNSON W.NDARC-NASA design and analysis of rotorcraft-Theoretical basis and architecture:NASA/TP-2009-215402[R].Washington, D.C.:NASA, 2010. [4] WALSH D, WEINER S, ARIFIAN K, et al.High airspeed testing of the Sikorsky X2 technology demonstrator[C]//Proceedings of the 67th American Helicopter Society Annual Forum.Washington, D.C.:American Helicopter Society, 2011:2057-2066. [5] 高正, 陈仁良.直升机飞行动力学[M].北京:科学出版社, 2003:31-32.GAO Z, CHEN R L.Helicopter flight dynamics[M].Beijing:Science Press, 2003:31-32(in Chinese). [6] LEISHMAN G J.Principles of helicopter aerodynamics with CD extra[M].Cambridge:Cambridge University Press, 2006:142-144. [7] BURGESS R K.The ABC rotor:A historical perspective[C]//Proceedings of the 60th Annual Forum of American Helicopter Society.Washington, D.C.:American Helicopter Society, 2004:7-10. [8] FERGUSON K M.Towards a better understanding of the flight mechanics of compound helicopter configurations[D].Glasgow:University of Glasgow, 2015. [9] HALLEY D H.ABC helicopter stability, control, and vibration evaluation on the Princeton dynamic model track[C]//Proceedings of the 29th Annual National Forum of American Helicopter Society.Washington, D.C.:American Helicopter Society, 1973:740-752. [10] RUDDELL A J.Advancing blade concept (ABCTM) development[J].Journal of the American Helicopter Society, 1977, 22(1):13-23. [11] RUDDELL A J, MACRINO J A.Advancing blade concept(ABC)high speed development[C]//Proceedings of the 36th Annual Forum of American Helicopter Society.Washington, D.C.:American Helicopter Society, 1980:274-283. [12] COLEMAN C P.A survey of theoretical and experimental coaxial rotor aerodynamic research:NASA TP-3675[R].Washington, D.C.:NASA, 1997. [13] CHI Z, TODD R Q, HOSSEIN S, et al.Aeromechanics of the coaxial compound helicopter[C]//Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2015:1-19. [14] 袁野, 陈仁良, 李攀.共轴刚性旋翼飞行器配平特性及验证[J]南京航空航天大学学报, 2016, 48(2):186-193. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20171010001&dbname=CAPJ2015YUAN Y, CHEN R L, LI P.Trim characteristics and verification of coaxial rigid rotor aircraft[J].Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2):186-193(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20171010001&dbname=CAPJ2015 [15] PHELPS A E, MINECK R E.Aerodynamic characteristics of a counter-rotating, coaxial, hingeless rotor helicopter model with auxiliary propulsion:NASA-TM-78705[R].Washington, D.C.:NASA, 1978. [16] 王适存.直升机空气动力学[M].北京:国防工业出版社, 1985:123-124.WANG S C.Helicopter aerodynamics[M].Beijing:National Defense Industry Press, 1985:123-124(in Chinese). [17] BAGAI A.Aerodynamic design of the X2 technology demonstratorTM main rotor blade[C]//Proceedings of the 64th Annual Forum of American Helicopter Society.Washington, D.C.:American Helicopter Society, 2008:1565-1580. [18] PADFIELD G D.Helicopter flight dynamics:The theory and application of flying qualities and simulation modelling[M].2nd ed.London:Blackwell Science Ltd., 1996:93-108. [19] ABBE J T L, BLACKWELL R H, JENNEY D S.Advancing blade concept (ABC)TM dynamics[C]//33rd American Helicopter Society Annual Forum.Washington, D.C.:American Helicopter Society, 1977:692-701.