留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载荷不确定的周期性结构稳健拓扑优化

付志方 王春洁

付志方, 王春洁. 载荷不确定的周期性结构稳健拓扑优化[J]. 北京航空航天大学学报, 2017, 43(4): 747-753. doi: 10.13700/j.bh.1001-5965.2016.0822
引用本文: 付志方, 王春洁. 载荷不确定的周期性结构稳健拓扑优化[J]. 北京航空航天大学学报, 2017, 43(4): 747-753. doi: 10.13700/j.bh.1001-5965.2016.0822
FU Zhifang, WANG Chunjie. Robust topology optimization of periodic structures under uncertain loading[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 747-753. doi: 10.13700/j.bh.1001-5965.2016.0822(in Chinese)
Citation: FU Zhifang, WANG Chunjie. Robust topology optimization of periodic structures under uncertain loading[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 747-753. doi: 10.13700/j.bh.1001-5965.2016.0822(in Chinese)

载荷不确定的周期性结构稳健拓扑优化

doi: 10.13700/j.bh.1001-5965.2016.0822
详细信息
    作者简介:

    付志方, 男, 博士研究生。主要研究方向:结构优化、仿真

    王春洁, 女, 博士, 教授, 博士生导师。主要研究方向:机械设计, 结构优化、仿真, 结构动力学

    通讯作者:

    王春洁, E-mail:wangcj@buaa.edu.cn

  • 中图分类号: TH122;O327

Robust topology optimization of periodic structures under uncertain loading

More Information
  • 摘要:

    提出了一种考虑周期性几何约束的结构稳健拓扑优化设计方法。针对线弹性体结构,提出了载荷不确定性条件下周期性结构稳健拓扑优化模型;推导了周期性结构柔度均值与方差的敏度数表达式,并基于软删双向渐进结构优化法提出了载荷不确定性条件下的周期性结构稳健拓扑优化设计方法。2个不同约束条件下的实例表明:本文提出的优化模型稳定性较好;考虑载荷不确定性得到的结构与确定性载荷下得到的结构有很大的区别,且稳健性优化设计得到的结构更加稳定。

     

  • 图 1  2D设计区域被分割成6个子域

    Figure 1.  2D design domain with 6 unit cells

    图 2  双侧固定梁结构的设计域

    Figure 2.  Design domain for a bilateral clamped beam structure

    图 3  双侧固定梁拓扑优化得到的构型

    Figure 3.  Layouts obtained from topology optimization of bilateral clamped beam

    图 4  双侧固定梁拓扑优化迭代历史

    Figure 4.  Iteration history of topology optimization of bilateral clamped beam

    图 5  初始设计区域

    Figure 5.  Primary design domain

    图 6  米歇尔结构拓扑优化得到的构型

    Figure 6.  Layouts obtained from topology optimization of Michelle structure

    图 7  米歇尔结构迭代历史

    Figure 7.  Iteration history of Michelle structure

    表  1  双侧固定梁拓扑优化结果

    Table  1.   Topology optimization result of bilateral clamped beam

    J
    周期数 稳健性优化 确定性优化
    均值 标准差 目标函数 均值 标准差 目标函数
    M=1×1 525.62 11.98 268.80 529.72 7.84 268.78
    M=1×2 601.58 1.78 301.68 615.17 17.70 316.44
    M=2×4 862.01 35.40 448.71 884.58 33.04 458.81
    下载: 导出CSV

    表  2  米歇尔结构拓扑优化结果

    Table  2.   Topology optimization result of Michelle structure

    J
    周期数 稳健性优化 确定性优化
    均值 标准差 目标函数 均值 标准差 目标函数
    M=1×1 92.43 10.46 51.45 141.66 67.41 104.54
    M=1×2 120.52 14.87 67.70 359.52 235.67 297.60
    M=1×4 139.89 20.44 80.17 265.13 132.34 198.74
    下载: 导出CSV
  • [1] WADLEY H N G, FLECK N A, EVAN A G.Fabrication and structural performance of periodic cellular metal sandwich structures[J].Composites Science and Technology, 2003, 63(16):2331-2343. doi: 10.1016/S0266-3538(03)00266-5
    [2] HUANG, X D, XIE Y M.Optimal design of periodic structures using evolutionary topology optimization[J].Structural and Multidisciplinary Optimization, 2008, 36(6):597-606. doi: 10.1007/s00158-007-0196-1
    [3] 焦洪宇, 周奇才, 李文军, 等.基于变密度法的周期性拓扑优化[J].机械工程学报, 2013, 49(13):132-138. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201313020.htm

    JIAO H Y, ZHOU Q C, LI W J, et al.Periodic topology optimization using variable density method[J].Journal of Mechanical Engineering, 2013, 49(13):132-138(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201313020.htm
    [4] 荣见华, 廖莺, 赵志军, 等.基于位移约束的类周期性连续体结构拓扑优化设计[J].应用力学学报, 2013, 30(6):876-881. doi: 10.11776/cjam.30.06.B131

    RONG J H, LIAO Y, ZHAO Z J, et al.Topology optimization of periodic-like structures with displacement constrains[J].Chinese Journal of Applied Mechanics, 2013, 30(6):876-881(in Chinese). doi: 10.11776/cjam.30.06.B131
    [5] 焦洪宇, 周奇才, 吴青龙, 等.桥式起重机箱型主梁周期性拓扑优化设计[J].机械工程学报, 2014, 50(23):134-139. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201423021.htm

    JIAO H Y, ZHOU Q C, WU Q L, et al.Periodic topology optimization of the box-type girder of bridge crane[J].Journal of Mechanical Engineering, 2014, 50(23):134-139(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201423021.htm
    [6] ZUO Z H, HUANG X D, YANG X Y.Comparing optimal material microstructures with optimal periodic structures[J].Computational Materials Science, 2013, 69(1):137-147.
    [7] LUO Z, TONG L, KANG Z.A level set method for structural shape and topology optimization using radial basis functions[J].Computers and Structures, 2009, 87(7):425-434.
    [8] GUEST J K, IGUSA T.Structural optimization under uncertain loads and nodal locations[J].Computer Methods in Applied Mechanics and Engineering, 2008, 198(1):116-124. doi: 10.1016/j.cma.2008.04.009
    [9] DUNNING P D, KIM H A, MULLINEUX G.Introducing loading uncertainty in topology optimization[J].AIAA Journal, 2011, 49(4):760-768. doi: 10.2514/1.J050670
    [10] CHEN S, CHEN W, LEE S.Level set based robust shape and topology optimization under random field uncertainties[J].Structural Multidisciplinary Optimization, 2010, 41(4):507-524. doi: 10.1007/s00158-009-0449-2
    [11] CHEN S, CHEN W.A new level-set based approach to shape and topology optimization under geometric uncertainty[J].Structural Multidisciplinary Optimization, 2011, 44(1):1-18. doi: 10.1007/s00158-011-0660-9
    [12] DUNNING P D, KIM H A.Robust topology optimization:Minimization of expected and variance of compliance[J].AIAA Journal, 2013, 51(11):2656-2664. doi: 10.2514/1.J052183
    [13] KANG Z, BAI S.On robust design optimization of truss structures with bounded uncertainties[J].Structural and Multidisciplinary Optimization, 2013, 47(5):699-714. doi: 10.1007/s00158-012-0868-3
    [14] 赵军鹏, 王春洁.载荷不确定条件下的结构拓扑优化算法[J].北京航空航天大学学报, 2014, 40(7):959-964. http://bhxb.buaa.edu.cn/CN/abstract/abstract12979.shtml

    ZHAO J P, WANG C J.Algorithm of structural topology optimization under loading uncertainty[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7):959-964(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12979.shtml
    [15] ZHAO J P, WANG C J.Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices[J].Computer Methods in Applied Mechanics and Engineering, 2014, 273(2):204-218.
    [16] 罗阳军, 亢战, 邓子辰.多工况下结构鲁棒性拓扑优化设计[J].力学学报, 2011, 43(1):227-234. doi: 10.6052/0459-1879-2011-1-lxxb2010-147

    LUO Y J, KANG Z, DENG Z C.Robust topology optimization design of structures with multiple load cases[J].Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):227-234(in Chinese). doi: 10.6052/0459-1879-2011-1-lxxb2010-147
    [17] 付志方, 赵军鹏, 王春洁.多工况线性结构稳健拓扑优化设计[J].力学学报, 2015, 47(4):642-650. doi: 10.6052/0459-1879-15-072

    FU Z F, ZHAO J P, WANG C J.Robust topology optimization design of structures with multiple load cases[J].Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4):642-650(in Chinese). doi: 10.6052/0459-1879-15-072
    [18] XIE Y M, ZUO Z H, HUANG X D, et al.Application of topological optimization technology to bridge design[J].Structural Engineering International, 2014, 24(2):185-191. doi: 10.2749/101686614X13830790993366
    [19] 刘丰睿, 赵丽滨, 韩邦成, 等.磁悬浮控制力矩陀螺框架结构的拓扑优化设计[J].北京航空航天大学学报, 2010, 36(4):455-458. http://bhxb.buaa.edu.cn/CN/abstract/abstract8479.shtml

    LIU F R, ZHAO L B, HAN B C, et al.Topology optimization design of frame structure for magnetic suspension control moment gyroscope[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(4):455-458(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8479.shtml
    [20] HUANG X D, XIE Y M.Evolutionary topology optimization of continuum structures:Methods and applications[M].Chichester:John Wiley & Sons, 2010:53-64.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1018
  • HTML全文浏览量:  190
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-24
  • 录用日期:  2016-11-25
  • 网络出版日期:  2017-04-20

目录

    /

    返回文章
    返回
    常见问答