Temperature rise characteristic of lithium battery integrated thermal management system combining phase change materials with air cooling
-
摘要:
锂电池在高倍率充放电过程中会产生大量热量,此热量不及时散出会导致电池超温进而影响电池的使用寿命,甚至导致安全事故。本文设计了一种新型相变材料/风冷综合热管理系统(TMS),并对综合热管理方式下的电池温升特性进行了实验和理论研究。基于集总参数法,结合电池生热及散热机理,建立了电池发热功率计算模型以及相变材料/风冷综合TMS电池温度场数学模型,计算了电池单体发热功率,分析了环境温度、电池充放电循环初始温度、相变温度、对流热阻以及电池和相变材料之间的导热热阻对电池综合TMS性能的影响。结果表明:综合TMS的冷却性能优于纯风冷热管理系统;电池充放电过程为非稳态传热过程,因此较高的初始温度带来超温风险;电池温度场数学模型能准确反映电池升温行为;较高的环境温度下,电池最大温升幅度降低,但可能导致电池最高温度超过安全温度;相变材料的相变温度越低,电池最大温升越低;减小导热热阻及对流热阻能显著提高TMS性能。
Abstract:A large amount of heat inside the lithium battery must be dissipated to ensure the safety of the battery by using high efficiency thermal management system (TMS) at high charging/discharging rates. A newly designed TMS integrating phase change material with air cooling was designed and its temperature rise characteristic was investigated theoretically and experimentally. Based on the lumped parameter method and the heat transfer mechanism, the mathematical models of temperature rise and heat generation power were developed for the battery. The battery heat generation power was calculated. The key parameters of ambient temperature, initial temperature, phase change temperature, convective resistance and conductive resistance between the battery and the phase change material affecting the performance of the integrated TMS were analyzed. The results indicate that the performance of the integrated TMS is superior to the pure air cooling system. In the non-steady process of temperature rise during charging and discharging, the higher initial temperature easily causes the battery to exceed the safe temperature. The mathematical model of the battery temperature field can accurately describe the battery temperature rise characteristic. At high ambient temperature, the maximum temperature rise of battery declined, but it may cause the maximum temperature to exceed the safe temperature. The higher phase change temperature is, the lower battery maximum temperature rise is. Reducing conductive resistance or convective resistance can significantly improve the performance of the TMS.
-
表 1 钛酸锂电池参数
Table 1. Parameters of lithium titanate battery
参数 数值 尺寸/(mm×mm×mm) 6.1×203×127 质量/g 285 标称电压/V 2.3 额定容量/(A·h) 10 推荐使用温度范围/℃ 充电-10~+45
放电-25~+55导热系数/(W·(m·K)-1) 5.22 -
[1] 欧阳陈志, 梁波, 刘燕平, 等.锂离子动力电池热安全性研究进展[J].电源技术, 2014, 38(2):382-385. http://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201402070.htmOUYANG C Z, LIANG B, LIU Y P, et al.Progress of thermal safety characteristics of high power lithium-ion batteries[J].Chinese Journal of Power Sources, 2014, 38(2):382-385(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201402070.htm [2] 王宏伟, 邓爽, 肖海清, 等.国内电动车用动力锂离子电池现状[J].电子元件与材料, 2012, 31(6):84-86. http://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201206030.htmWANG H W, DENG S, XIAO H Q, et al.Review on domestic power Li-ion battery[J].Electronic Components and Materials, 2012, 31(6):84-86(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201206030.htm [3] 唐致远, 管道安, 张娜, 等.锂离子动力电池的安全性研究进展[J].化工进展, 2005, 24(10):1098-1102. doi: 10.3321/j.issn:1000-6613.2005.10.006TANG Z Y, GUAN D A, ZHANG N, et al.Research on safety characteristics of high power lithium-ion batteries[J].Chemical Industry and Engineering Progress, 2005, 24(10):1098-1102(in Chinese). doi: 10.3321/j.issn:1000-6613.2005.10.006 [4] BIENSAN P, SIMON B, PÉRÈS J P, et al.On safety of lithium-ion cells[J].Journal of Power Sources, 1999, 81-82(99):906-912. http://linkinghub.elsevier.com/retrieve/pii/S0378775399001354 [5] 侯永涛, 赛羊羊, 孟令斐, 等.纯电动汽车锂离子电池热效应的建模及仿真[J].电源技术, 2016, 40(6):1185-1188. http://cdmd.cnki.com.cn/Article/CDMD-10611-1013044254.htmHOU Y T, SAI Y Y, MENG L F, et al.Modeling and simulation of thermal effects of lithium-ion battery for electric vehicles[J].Chinese Journal of Power Sources, 2016, 40(6):1185-1188(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10611-1013044254.htm [6] SABBAH R, KIZILEL R, SELMAN J R, et al.Active (air-cooled) vs.passive (phase change material) thermal management of high power lithium-ion packs:Limitation of temperature rise and uniformity of temperature distribution[J].Journal of Power Sources, 2008, 182(2):630-638. doi: 10.1016/j.jpowsour.2008.03.082 [7] 张国庆, 张海燕.相变储能材料在电池热管理系统中的应用研究进展[J].材料导报, 2006, 20(8):9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200608003.htmZHANG G Q, ZHANG H Y.Progress in application of phase change materials in battery module thermal management system[J].Materials Review, 2006, 20(8):9-12(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200608003.htm [8] HALLAJ S A, SELMAN J R.A novel thermal management system for electric vehicle batteries using phase-change material[J].Journal of the Electrochemical Society, 2000, 147(9):3231-3236. doi: 10.1149/1.1393888 [9] RAO Z H, WANG S F, ZHANG Y L.Simulation of heat dissipation with phase change material for cylindrical power battery[J].Journal of the Energy Institute, 2016, 85(1):38-43. doi: 10.1179/1743967111Z.0000000008?scroll=top&needAccess=true [10] KHATEEB S A, AMIRUDDIN S, FARID M, et al.Thermal management of Li-ion battery with phase change material for electric scooters:Experimental validation[J].Journal of Power Sources, 2005, 142(1):345-353. https://wiki.aalto.fi/download/attachments/91692283/thermal_management_of_li-ion_battery_with_pcm_for_electrics_scooters.pdf?version=1&modificationDate=1398448132566&api=v2 [11] LING Z, WANG F, FANG X, et al.A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J].Applied Energy, 2015, 148:403-409. doi: 10.1016/j.apenergy.2015.03.080 [12] HUANG Q, YAN M, JIANG Z.Thermal study on single electrodes in lithium-ion battery[J].Journal of Power Sources, 2006, 156(2):541-546. doi: 10.1016/j.jpowsour.2005.05.083 [13] ONDA K, OHSHIMA T, NAKAYAMA M, et al.Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J].Journal of Power Sources, 2006, 158(1):535-542. doi: 10.1016/j.jpowsour.2005.08.049 [14] 刘恒伟, 李建军, 谢潇怡, 等.加速量热仪在锂离子电池热测试中的应用[J].集成技术, 2015, 4(1):51-59. http://www.cnki.com.cn/Article/CJFDTOTAL-JCJI201501007.htmLIU H W, LI J J, XIE X Y, et al.Application of accelerating rate calorimeter in the lithium-ion battery thermal test[J].Journal of Integration Technology, 2015, 4(1):51-59(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JCJI201501007.htm [15] BERNARDI D, PAWLIKOWSKI E, NEWMAN J.A general energy balance for battery systems[J].Journal of the Electrochemical Society, 1984, 132(1):5-12. http://jes.ecsdl.org/content/132/1/5.abstract?cited-by=yesl132/1/5r132/1/5 [16] DONG H J, BAEK S M.Thermal modeling of cylindrical lithium ion battery during discharge cycle[J].Energy Conversion & Management, 2011, 52(8):2973-2981. https://www.researchgate.net/publication/251532890_Thermal_modeling_of_cylindrical_lithium_ion_battery_during_discharge_cycle/reviews/22712 [17] FORGEZ C, DO D V, FRIEDRICH G, et al.Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J].Journal of Power Sources, 2010, 195(9):2961-2968. doi: 10.1016/j.jpowsour.2009.10.105 [18] 林成涛, 王军平, 陈全世.电动汽车SOC估计方法原理与应用[J].电池, 2004, 34(5):376-378. http://www.cnki.com.cn/Article/CJFDTOTAL-DACI200405027.htmLIN C T, WANG J P, CHEN Q S.Methods for state of charge estimation of EV batteries and their application[J].Battery Bimonthly, 2004, 34(5):376-378(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DACI200405027.htm [19] 何志超, 杨耕, 卢兰光, 等.基于恒流外特性和SOC的电池直流内阻测试方法[J].清华大学学报(自然科学版), 2015, 55(5):532-537. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201505009.htmHE Z C, YANG G, LU L G, et al.Battery DC internal resistance test method based on the constant current external characteristics and SOC[J].Journal of Tsinghua University (Science and Technology), 2015, 55(5):532-537(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201505009.htm [20] 高明, 张宁, 王世学, 等.翅片式锂电池热管理系统散热性能的实验研究[J].化工进展, 2016, 35(4):1068-1073. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201604016.htmGAO M, ZHANG N, WANG S X, et al.Experiment on heat dispersion of finned lithium battery thermal management system[J].Chemical Industry and Engineering Progress, 2016, 35(4):1068-1073(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201604016.htm