-
摘要:
针对直升机配平模型为多元且初始值难以确定的非线性方程组,以及全局最优解不唯一等问题,发展了一种基于遗传算法/拟牛顿法的高效混合迭代算法。介绍了直升机各个模块动力学方程。其中在旋翼建模中,考虑实际飞行环境下桨叶的运动和操纵特性,以动态入流和叶素法为理论基础,建立了具有配平特性的旋翼气动力模型。基于直升机飞行仿真动力学模型,详细推导了前推/后拉的配平变量和约束方程。通过构造目标函数,将全机配平问题转化为优化问题。通过计算UH-60A直升机在前推/后拉的配平解,并与飞行测试数据进行比较验证。结果表明,前推配平结果与飞行数据有偏差,后拉配平结果与飞行数据吻合。旋翼非定常气动特性是引起总距和脚蹬配平计算误差的主要原因。建立的配平算法适用于直升机不同稳定飞行条件下的仿真。
Abstract:To solve the problems that helicopter trim model has multivariate nonlinear equations, it is difficult to determine its initial value and the global optimal solution is non-unique, an efficient hybrid iteration algorithm is presented in this paper, which combines the genetic algorithm and the quasi-Newton method. The dynamic equations of the different modules of the helicopter are introduced. In modeling the rotor, considering characteristics of the motion and control of the rotor in the actual flight environment, an aerodynamic model of rotor based on dynamic inflow and the blade element theory with the rotor trim is established. The trim control vector and the constraint equations for push-forward/pull-backward are deduced in detail based on helicopter flight dynamic model. Since the objective function is constructed, trim problems are transformed into optimal computation. UH-60A helicopter in the push-forward/pull-backward flight is trimmed, and the trim results are compared with flight test data. It is shown that the pull-backward results agree well with flight data, and there is the discrepancy between the push-forward results and flight data. The primary contribution to the discrepancy of the trim of collective and pedal comes from inaccurate prediction of the unsteady aerodynamic characteristics of the rotor. It is a universal method that can be applied to helicopter trim simulation of different stable flight conditions.
-
Key words:
- helicopter /
- flight simulation /
- trim /
- hybrid genetic algorithm /
- push-forward/pull-backward
-
-
[1] DE MARCO A, DUKE E L, BERNDT J S.A general solution to the aircraft trim problem[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit.Reston:AIAA, 2007:3. [2] 张镭. 飞行模拟器飞行仿真系统建模与软件实现[D]. 哈尔滨: 哈尔滨工业大学, 2009: 62-69.ZHANG L.Flight simulation modeling and software development for flight simulator[D].Harbin:Harbin Institute of Technology, 2009:62-69(in Chinese). [3] PADFIELD G D.Helicopter flight dynamics:The theory and application of flying qualities and simulation modeling[M].Oxford:Blackwell Publishing Ltd., 2007:192-204. [4] SEKULA M K, GANDHI F.Effects of auxiliary lift and propulsion on helicopter vibration reduction and trim[J].Journal of Aircraft, 2004, 41(3):645-656. doi: 10.2514/1.496 [5] STEIJL R, BARAKOS G, BADCOCK K.A framework for CFD analysis of helicopter rotors in hover and flight[J].Intermational Journal of Numerical Methods in Fluids, 2006, 51(8):819-847. doi: 10.1002/(ISSN)1097-0363 [6] 杨超, 洪冠新.求解非线性代数方程组的一种建议方法[J].飞行力学, 1997, 15(2):42-46. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX199702008.htmYANG C, HONG G X.A suggested method of solving the nonlinear algebraic equations[J].Flight Dynamics, 1997, 15(2):42-46(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX199702008.htm [7] SUBRAMANIAN S, VENKATARATNAM S, GAON-KAR G H.Parallel fast-floquet analysis of trim and stability for large helicopter models[J].Mathematical and Computer Modeling, 2001, 33(10-11):1155-1176. doi: 10.1016/S0895-7177(00)00305-8 [8] SCHANK T C.Optimal aeroelastic trim for rotorcraft with constrained non-unique trim solutions[D].Atlanta:Georgia Institute of Technology, 2008:87-90. [9] YAMASHITA N, FUKUSHIMA M.Modified Newton methods for solving a semi smooth reformlation of mono-tone complementarity problems[J].Math Program, 1997, 76(3):469-491. doi: 10.1007/BF02614394 [10] 孙传伟, 黄一敏, 高正.直升机飞行品质评估数学建模研究[J].飞行力学, 2001, 19(1):10-12. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201707001.htmSUN C W, HUANG Y M, GAO Z.Investigation of helicopter mathematical model appropriate for flying quality evaluation[J].Flight Dynamics, 2001, 19(1):10-12(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201707001.htm [11] SUBRAMANIAN S, GAONKAR G H, MAIER T H.A theoretical and experimental investigation of hingeless-rotor stability and trim[C]//Twenty-Third European Rotorcraft Forum.Dresdoen:ERF, 1997:10-18. [12] BURDEN R L, FAIRES J D.Numerical analysis[M].7th ed.Boston:Prindle, Weber & Schmidt, 2001:851-865. [13] 刘国强. 基于遗传算法的直升机旋翼桨叶气动外形优化设计[D]. 南京: 南京航空航天大学, 2011: 11-12.LIU G Q.Aerodynamic shape optimization design for helicopter rotor blades based on the genetic algorithm[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:11-12(in Chinese). [14] ZHANG L, HUANG Q T, JIANG H Z.Trimming aircraft on the ground based on the hybrid genetic algorithm[J].The Japan Society for Aeronautical and Space Sciences, 2009, 52(177):117-224. https://www.jstage.jst.go.jp/article/tjsass/52/177/52_177_117/_article [15] 王海涛, 高金源.基于混合遗传算法求解飞机平衡状态[J].航空学报, 2005, 26(4):470-475. http://youxian.cnki.com.cn/yxdetail.aspx?filename=BJHK201710007&dbname=CJFDPREPWANG H T, GAO J Y.Solving the equilibrium states of aircraft based on mixture genetic algorithm[J].Acta Aeronautica et Astronautica Sinica, 2005, 26(4):470-475(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=BJHK201710007&dbname=CJFDPREP [16] 栾志博, 郑淑涛, 李洪人.基于混合遗传算法求解飞机定常状态[J].吉林大学学报(工学版), 2011, 41(1):165-170. http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201101033.htmLUAN Z B, ZHENG S T, LI H R.Solution of steady state of aircraft based on mixture genetic algorithm[J].Journal of Jilin University(Engineering and Technology Edition), 2011, 41(1):165-170(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201101033.htm [17] DAI J Y.Robust flight controller design for helicopters based on genetic algorithms[C]//Proceedings of 15th Triennial World Congress of IFAC.Barcelona:IFAC, 2002:68-75. [18] 吴超, 谭剑锋, 王浩文, 等.基于GA/LM混合优化的直升机全机配平算法[J].飞行力学, 2014, 32(1):5-9. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201401003.htmWU C, TAN J F, WANG H W, et al.Optimal trim for helicopter based on GA and LM hybrid algorithm[J].Flight Dynamics, 2014, 32(1):5-9(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201401003.htm [19] 朱明勇, 招启军, 王博.基于CFD和混合配平算法的直升机旋翼地面效应模拟[J].航空学报, 2016, 37(8):2539-2551. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608020.htmZHU M Y, ZHAO Q J, WANG B.The simulation of helicopter rotor in-ground-effect based on CFD method and hybrid trim algorithm[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2539-2551(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608020.htm [20] TALBOT P D, TINLING B E, DECKER W A, et al.Mathematical model of a single main rotor helicopter for piloted simulation:NASA-TM-84281[R].Washington, D.C.:NASA, 1982. [21] PITT D M, PETERS D A.Theoretical prediction of dynamic inflow derivatives[J].Vertica, 1981, 5(1):21-34. http://industry.wanfangdata.com.cn/dl/Detail/ExternalResource?id=njhkht201502005%5e10 [22] 代冀阳, 吴国辉, 朱国民.适于直升机配平计算的混合遗传算法[J].飞行力学, 2010, 28(1):24-27. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201001007.htmDAI J Y, WU G H, ZHU G M.Equilibrium computation of helicopters used by hybrid genetic algorithm[J].Flight Dynamics, 2010, 28(1):24-27(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201001007.htm [23] BALLINM G.Validation of a real-time engineering simulation of the UH-60A helicopter:NASA-TM-88360[R].Washington, D.C.:NASA, 1987. [24] HOWLETT J J.UH-60A black hawk engineering simulation program:VolumeⅠ-Mathematical model:NASA CR-166309[R].Washington, D.C.:NASA, 1981. [25] DREIER M E.Introduction to helicopter and tiltrotor flight simulation[M].Reston:AIAA, 2007:328.