Numerical study for damage of carbon fiber reinforced resin matrix laminates related to strain rates
-
摘要:
为了研究高应变率载荷对于碳纤维增强树脂基复合材料变形破坏行为的影响,通过应变率修正式对复合材料的刚度与强度进行修正,建立了可考虑应变率效应的复合材料损伤数值模型,采用该模型对不同应变率条件下层板结构的面内破坏行为进行了模拟并与文献实验进行了对比分析。计算结果表明:本文所构建的数值模型可以有效预测树脂基层板结构在不同应变率条件下的破坏特征,并在材料刚度与强度硬化现象的预测方面有着较高精度;对于0°、90°铺层主导的试件,由于其力学性能近似为线性,数值模型在强度预测方面获得了较高精度;而对于±45°铺层主导试件,其在不同应变率条件下表现出较强的非线性损伤特性,因此模型在其强度性能预测方面存在一定误差。
Abstract:In order to study the effect of high strain rate loading on the deformation and failure of carbon fiber reinforced resin matrix composites, a numerical damage model, in which the stiffness and strength of composite material were modified by the strain rate correction method, was established in consideration of the strain rate effect. The in-plane failure behavior of the laminar structure under different strain rate conditions was simulated and compared with the literature experiment. The results show that the numerical model constructed in this paper can effectively predict the failure characteristics of the resin base plate structure under different strain rate conditions, and has high accuracy in predicting the stiffness and strength hardening phenomenon. For the specimen dominated by 0° and 90° layer, because of the quasi-linear mechanical properties, the numerical model obtains high accuracy in strength prediction; however, for ±45° layer dominant specimen, it exhibits the characteristics of strong nonlinear damage under different strain rate conditions, so the model has some errors in its strength prediction.
-
Key words:
- composite /
- laminates /
- strain rate effect /
- Hashin criteria /
- damage evolution
-
表 1 不同损伤模式下的等效位移与应力计算式
Table 1. Formulas of equivalent displacement and stress under different damage modes
损伤模式 等效位移 等效应力 纤维拉伸 纤维压缩 基体拉伸 基体压缩 表 2 T700/Epoxy复合材料本构参数
Table 2. Constitutive parameters of T700/Epoxy composite
参数 数值 E11/GPa 119.8 E22=E33/GPa 10.5 ν12=ν13 0.297 5 ν23 0.48 G12=G13/GPa 5.2 G23/GPa 3.7 XT/GPa 1.805 XC/ GPa 1.338 YT/ GPa 0.05 YC/GPa 0.204 ST=SC/GPa 0.13 AS 2.3 BS 0.2 CS 3.1 Am 1.85 Bm 0.5 Cm 1.3 注:AS,BS,CS-强度应变率效应参数值;Am,Bm,Cm-模量应变率效应参数值。 表 3 界面层材料等效参数
Table 3. Equivalent parameters of interface layer material
MPa 等效参数 Knn Kss Ktt 数值 250 000 121 100 121 100 注:Knn-法向刚度;Kss-1方向刚度;Ktt-2方向刚度。 表 4 界面层材料破坏强度
Table 4. Damage strength of interface layer material
MPa 破坏模式 法向 1方向 2方向 界面强度 102 50 50 -
[1] 周元鑫, 江大志, 夏源明.炭纤维静、动态加载下拉伸力学性能的试验研究[J].材料科学与工艺, 2000, 8(1):12-15. http://www.cnki.com.cn/Article/CJFDTOTAL-CLKG200001002.htmZHOU Y X, JIANG D Z, XIA Y M.Static and dynamic tensile behavior of carbon fiber[J].Material Science and Technology, 2000, 8(1):12-15(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CLKG200001002.htm [2] GILAT A, GOLDBERG R K, ROBERTS G D.Experimental study of strain-rate-dependent behavior of carbon/epoxy composite[J].Composites Science and Technology, 2002, 62(10-11):1469-1476. doi: 10.1016/S0266-3538(02)00100-8 [3] HOSUR M V, ALEXANDER J, VAIDYA U K, et al.High strain rate compression response of carbon/epoxy laminate composites[J].Composite Structures, 2001, 52(3-4):405-417. doi: 10.1016/S0263-8223(01)00031-9 [4] JADHAV A, WOLDESENBET E, PANG S S.High strain rate properties of balanced angle-ply graphite/epoxy composites[J].Composites Part B:Engineering, 2003, 34(4):339-346. doi: 10.1016/S1359-8368(03)00003-9 [5] 黄桥平, 赵桂平, 卢天健.考虑应变率效应的复合材料层板冲击动态响应[J].西安交通大学学报, 2009, 43(1):72-76. doi: 10.7652/xjtuxb200901016HUANG Q P, ZHAO G P, LU T J.Dynamic response with strain rate dependence of composite laminates[J].Journal of Xi'an Jiaotong University, 2009, 43(1):72-76(in Chinese). doi: 10.7652/xjtuxb200901016 [6] 王正浩, 赵桂平, 马君峰, 等.碳/环氧树脂复合材料应变率效应的实验研究[J].复合材料学报, 2007, 24(2):113-119. http://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200702019.htmWANG Z H, ZHAO G P, MA J F, et al.Experiment study on the strain rate behavior of carbon/epoxy composite materials[J].Acta Materiae Compositae Sinica, 2007, 24(2):113-119(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200702019.htm [7] HARDING J, WELSH L M.A tensile testing technique for fibre-reinforced composites at impact rates of strain[J].Journal of Materials Science, 1983, 18(6):1810-1826. doi: 10.1007/BF00542078 [8] CANTWELL W J, MORTON J.Geometrical effects on the high velocity impact response of CFRP[J].Composite Structures, 1988, 10(3):247-265. doi: 10.1016/0263-8223(88)90022-0 [9] HASHIN Z.Failure criteria for unidirectional fiber composites[J].Journal of Applied Mechanics, 1980, 47(2):329-334. doi: 10.1115/1.3153664 [10] HASHIN Z.Analysis of stiffness reduction of cracked cross-ply laminates[J].Engineering Fracture Mechanics, 1986, 25(5):771-778. [11] ALHASSANI S T S, KADDOUR A S.Strain rate effects on GRP, KRP and CFRP composite laminates[J].Key Engineering Materials, 1998, 141-143:427-452. doi: 10.4028/www.scientific.net/KEM.141-143 [12] GUDEN M, YILDIRIM U, HALL I W.Effect of strain rate on the compression behavior of a woven glass fiber/SC-15 composite[J].Polymer Testing, 2004, 23(6):719-725. doi: 10.1016/j.polymertesting.2004.01.004 [13] JOHNSON W S, MASTERS J E, WILSON D W, et al.High strain rate characterization of a glass/epoxy composite[J].Journal of Composites Technology & Research, 2000, 22(1):3-11. [14] MATZENMILLER A, LUBLINER J, TAYLOR R L.A constitutive model for anisotropic damage in fiber-composites[J].Mechanics of Materials, 1995, 20(2):125-152. doi: 10.1016/0167-6636(94)00053-0 [15] ULVEN C, VAIDYA U K, HOSUR M V.Effect of projectile shape during ballistic perforation of VARTM carbon/epoxy composite panels[J].Composite Structures, 2003, 61(1-2):143-150. doi: 10.1016/S0263-8223(03)00037-0 [16] LAPCZYK I, HURTADO J A.Progressive damage modeling in fiber-reinforced materials[J].Composites Part A:Applied Science and Manufacturing, 2007, 38(11):2333-2341. doi: 10.1016/j.compositesa.2007.01.017