-
摘要:
针对频率步进合成孔径雷达(SAR)采用经典逆傅里叶变换成像方法时距离向无模糊测绘带宽度有限的问题,提出一种将频率步进SAR脉冲串信号等效为沿航迹分布的虚拟阵列雷达信号的模型及成像处理方法,并利用改进的后向投影方法实现对目标的无模糊成像。建立了频率步进SAR虚拟阵列模型,给出了基于该模型的高分辨距离像合成方法,并通过在原始后向投影方法的基础上引入距离偏移校正和二次相位补偿,实现了对目标的精确二维成像。结果表明:频率步进SAR虚拟阵列模型成像方法不受频率步进雷达无模糊测绘带宽度的理论限制,可以实现较宽测绘带内各目标的无模糊、快速成像。
-
关键词:
- 频率步进合成孔径雷达 /
- 虚拟阵列 /
- 后向投影 /
- 快速傅里叶变换(FFT) /
- 空时自适应处理(STAP)
Abstract:Aimed at the problem that frequency-stepped synthetic aperture radar (SAR) images obtained by classic inverse Fourier transform method have a limit on unambiguous range, a new model which takes the pulse sequence of frequency-stepped SAR as an along-track virtual array radar signal and its corresponding imaging method for frequency-stepped SAR were proposed. Meanwhile, unambiguous imaging using modified back-projection method is realized. The virtual array model for frequency-stepped SAR signal was established and the synthesis method of high resolution range profile based on this model was presented. By embedding range migration correction and secondary phase compensation into original back-projection algorithm, a precise two-dimensional image of the target was also obtained. All the results show that the virtual array model based imaging method for frequency-stepped SAR is not restricted by the theoretical limit of frequency-stepped signal's unambiguous range and can get images without range ambiguity for wide swath imaging rapidly.
-
表 1 仿真参数
Table 1. Simulation parameters
参数 数值 参考载频/GHz 10 子脉冲数目 1 025 天线波束宽度/(°) 1.30 平台高度/km 8.00 总信号带宽/MHz 700 脉冲串重复频率/Hz 333.14 场景大小(距离向×方位向)/(m×m) 200×200 频率步进量/MHz 0.683 子脉冲宽度/μs 1.46 平台速度/(m·s-1) 58.50 参考斜距/km 11.31 占空比 0.50 子脉冲重复频率/kHz 341.46 地距分辨率(距离向×方位向)/(m×m) 0.30×0.36 表 2 本文方法目标点散布函数结果
Table 2. Target point spread function results of proposed method
目标
序号距离向 方位向 PSLR/dB ISLR/dB PSLR/dB ISLR/dB 1 -13.382 0 -9.857 6 -13.277 6 -10.225 8 2 -13.383 5 -9.848 7 -13.303 5 -10.209 2 3 -13.382 0 -9.857 6 -13.277 6 -10.225 8 4 -13.462 5 -9.895 5 -13.283 4 -10.225 7 5 -13.470 1 -9.885 1 -13.326 2 -10.228 3 6 -13.462 5 -9.895 5 -13.283 4 -10.225 7 7 -13.619 6 -9.960 1 -13.292 1 -10.221 3 8 -13.624 9 -9.952 2 -13.306 4 -10.216 5 9 -13.619 6 -9.960 1 -13.292 1 -10.221 3 表 3 经典方法目标点散布函数结果
Table 3. Target point spread function results of classic method
目标
序号距离向 方位向 PSLR/dB ISLR/dB PSLR/dB ISLR/dB 1 -13.310 3 -9.957 4 -13.203 1 -10.218 2 2 -13.312 9 -9.840 0 -13.203 5 -10.218 9 3 -13.314 0 -9.771 2 -13.274 3 -10.221 5 4 -13.300 3 -9.895 5 -13.213 0 -10.217 2 5 -13.387 6 -9.966 4 -13.221 2 -10.220 8 6 -13.320 0 -10.009 0 -13.230 3 -10.217 5 7 -13.310 3 -9.961 9 -13.213 4 -10.221 3 8 -13.390 3 -9.856 9 -13.202 1 -10.220 6 9 -13.319 6 -9.985 4 -13.198 4 -10.219 1 -
[1] 颜志升.步进频波形优化设计及处理技术[J].现代雷达, 2015, 37(9):40-43. http://www.cqvip.com/QK/93693X/201509/666042709.htmlYAN Z S.Optimized design of the stepped-frequency signal waveform and its processing technology[J].Modern Radar, 2015, 37(9):40-43(in Chinese). http://www.cqvip.com/QK/93693X/201509/666042709.html [2] 彭岁阳, 张军, 沈振康.随机频率步进雷达成像分析[J].国防科技大学学报, 2011, 33(1):59-64. doi: 10.3969/j.issn.1001-2486.2011.01.013PENG S Y, ZHANG J, SHEN Z K.Imaging analysis of random step frequency radar[J].Journal of National University of Defense Technology, 2011, 33(1):59-64(in Chinese). doi: 10.3969/j.issn.1001-2486.2011.01.013 [3] 顾福飞, 张群, 娄昊, 等.一种孔径和频率二维稀疏的步进频SAR成像方法[J].航空学报, 2015, 36(4):1221-1229. http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201206013.htmGU F F, ZHANG Q, LOU H, et al.A SAR imaging method with 2D sparse aperture and frequency using stepped-frequency waveform[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1221-1229(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201206013.htm [4] 吕明久, 李少东, 杨军, 等.频率步进信号距离-方位联合超分辨成像方法[J].电波科学学报, 2016, 31(3):537-545. https://mall.cnki.net/lunwen-1013213186.htmlLYU M J, LI S D, YANG J, et al.Range-azimuth joint ISAR super-resolution imaging method based on frequency-stepped signal[J].Chinese Journal of Radio Science, 2016, 31(3):537-545(in Chinese). https://mall.cnki.net/lunwen-1013213186.html [5] 李俊慧, 王洪, 汪学刚, 等.步进频、脉冲和连续波SAR的对比研究[J].雷达科学与技术, 2016, 14(1):45-53. doi: 10.3969/j.issn.1672-2337.2016.01.008LI J H, WANG H, WANG X G, et al.Comparative study on stepped frequency, pulsed and continuous wave SARs[J].Radar Science and Technology, 2016, 14(1):45-53(in Chinese). doi: 10.3969/j.issn.1672-2337.2016.01.008 [6] 陈一畅, 张群, 陈校平, 等.多重测量矢量模型下的稀疏步进频率SAR成像算法[J].电子与信息学报, 2014, 36(12):2986-2993. http://www.cnki.com.cn/Article/CJFDTotal-DZYX201505016.htmCHEN Y C, ZHANG Q, CHEN X P, et al.An imaging algorithm of sparse stepped frequency SAR based on multiple measurement vectors model[J].Journal of Electronics & Information Technology, 2014, 36(12):2986-2993(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DZYX201505016.htm [7] 李海英, 杨汝良.频率步进信号的合成孔径雷达处理[J].电子学报, 2003, 31(3):349-352. http://d.old.wanfangdata.com.cn/Periodical/dianzixb200303009LI H Y, YANG R L.Stepped-frequency synthetic aperture radar imaging[J].Acta Electronica Sinica, 2003, 31(3):349-352(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dianzixb200303009 [8] 吕明久, 李少东, 杨军, 等.基于全局最小熵的随机稀疏调频步进信号运动补偿方法[J].系统工程与电子技术, 2016, 38(8):1744-1751. https://image.hanspub.org/Html/3-1540623_18315.htmLYU M J, LI S D, YANG J, et al.Motion-compensation method based on global minimum entropy for random sparse stepped-frequency chirp signal[J].Systems Engineering and Electronics, 2016, 38(8):1744-1751(in Chinese). https://image.hanspub.org/Html/3-1540623_18315.htm [9] 梁福来. 低空无人机载UWB SAR增强成像技术研究[D]. 长沙: 国防科学技术大学, 2013: 27-35. http://cdmd.cnki.com.cn/Article/CDMD-90002-1015959086.htmLIANG F L. Research on enhanced imaging techniques of low-altitude UAV-mounted UWB SAR[D]. Changsha: National University of Defense Technology, 2013: 27-35(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90002-1015959086.htm [10] 牛涛, 陈卫东.脉冲步进频率雷达的一种运动补偿新方法[J].中国科学技术大学学报, 2005, 35(2):161-166. doi: 10.3969/j.issn.1001-2400.2000.03.002NIU T, CHEN W D.A new method of motion compensation for pulse stepped-frequency radars[J].Journal of University of Science and Technology of China, 2005, 35(2):161-166(in Chinese). doi: 10.3969/j.issn.1001-2400.2000.03.002 [11] 李俊慧, 王洪, 汪学刚, 等.步进频SAR的波数域成像算法研究[J].现代雷达, 2016, 38(7):25-31. http://d.old.wanfangdata.com.cn/Periodical/xdld201607007LI J H, WANG H, WANG X G, et al.Stepped frequency SAR imaging using wavenumber domain algorithm[J].Modern Radar, 2016, 38(7):25-31(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xdld201607007 [12] 周芳. 高分辨SAR/ISAR成像信号补偿新技术研究[D]. 西安: 西安电子科技大学, 2014: 18-26. http://cdmd.cnki.com.cn/Article/CDMD-10701-1015437824.htmZHOU F. New signal compensation techniques for high resolution SAR/ISAR imaging[D]. Xi'an: Xidian University, 2014: 18-26(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10701-1015437824.htm [13] VILLANO M, KRIEGER G, MOREIRA A.A novel processing strategy for staggered SAR[J].IEEE Geoscience and Remote Sensing Letters, 2014, 11(11):1891-1895. doi: 10.1109/LGRS.2014.2313138 [14] SCHOLNIK D P. Range-ambiguous clutter suppression with pulse-diverse waveforms[C]//2011 IEEE Radar Conference. Piscataway, NJ: IEEE Press, 2011: 336-341. [15] HALE T B, TEMPLE M A, RAQUET J F, et al.Localized three-dimensional adaptive spatial-temporal processing for airborne radar[J].IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(1):18-22. doi: 10.1049/ip-rsn:20030075 [16] BAIZERT P, HALE T B, TEMPLE M A, et al.Forward-looking radar GMTI benefits using a linear frequency diverse array[J].Electronics Letters, 2006, 42(22):1311-1312. doi: 10.1049/el:20062791 [17] 王伟伟, 吴孙勇, 徐京伟, 等.基于频率分集阵列的机载雷达距离模糊杂波抑制方法[J].电子与信息学报, 2015, 37(10):2321-2327. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201510006WANG W W, WU S Y, XU J W, et al.Range ambiguity clutter suppression for airborne radar based on frequency diverse array[J].Journal of Electronics & Information Technology, 2015, 37(10):2321-2327(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201510006