Experimental study on electromagnetic noise suppression of atomic spin gyroscope heating chamber
-
摘要:
原子自旋陀螺仪作为目前最新一类陀螺仪,具有超高的理论精度。碱金属气室是原子自旋陀螺仪承载原子自旋的敏感表头。通过电加热使碱金属达到饱和蒸气压,但是电加热过程中会引入电磁干扰等噪声,进而影响原子自旋陀螺仪的精度和灵敏度。为减小碱金属气室加热的电磁噪声对原子自旋陀螺仪的影响,从加热器结构与加热驱动信号2个方面进行了电磁噪声抑制实验研究。设计了具有磁场噪声抑制作用的异形加热膜,使高频正弦波作为加热驱动信号,构建了碱金属气室集成化无磁电加热单元。通过实验验证,系统的等效磁场噪声优于17 fT/Hz1/2,气室内部的温度稳定度优于±0.006 ℃,为原子自旋陀螺仪的性能提升提供了可靠保障。
Abstract:Atomic spin gyroscope is the latest type of gyroscope, which has ultra-high theoretical precision. Alkali vapor cell is the sensing element of atomic spin gyroscope, which carries the atomic spin effect. Electric heating makes alkali attain saturated vapor pressure, which will introduce electromagnetic interference and other noises, thereby affecting the accuracy and sensitivity of atomic spin gyroscope. To reduce the influence of heating chamber electromagnetic noise on the atomic spin gyroscope, the electromagnetic noise suppression experiment was studied from two aspects of heater structure and heating driving signal. A special shaped heating film with magnetic noise suppression was designed. A high frequency sine wave was designed as the heating driving signal. In addition, a non-magnetic heating system of alkali vapor cell was constructed. The test results show that the equivalent magnetic noise is within 17 fT/Hz1/2, and the temperature stability of the alkali vapor cells is within ±0.006℃, which provides a reliable guarantee for the performance improvement of atomic spin gyroscope.
-
表 1 Ziegler-Nichols闭环整定法参数
Table 1. Ziegler-Nichols closed loop setting method's parameters
参数 KP KI KD 取值 0.6KPcrit 2KP/Tcrit 0.12KPTcrit 表 2 温控性能测试结果数据分析
Table 2. Data analysis of temperature control performance test results
℃ 陀螺类型 设定值 平均值 偏差 标准差 核磁共振陀螺仪 100 99.999 887 1.130 6×10-4 0.002 3 SERF原子自旋陀螺仪 200 200.000 067 -6.666 7×10-5 0.002 5 -
[1] ZOU S, ZHANG H, CHEN X Y, et al.A novel calibration method research of the scale factor for the all-optical atomic spin inertial measurement device[J].Journal of the Optical Society of Korea, 2015, 19(4):415-420. doi: 10.3807/JOSK.2015.19.4.415 [2] FANG J C, CHEN Y, ZOU S, et al.Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field[J].Journal of Physics B:Atomic, Molecular and Optical Physics, 2016, 49(6):65006-1-65006-8. [3] 万双爱. 基于SERF的原子自旋陀螺仪自旋耦合控制方法及实验研究[D]. 北京: 北京航空航天大学, 2014: 3-5.WAN S A. Study on the spin coupling control methods for atomic spin gyroscope based on SERF[D]. Beijing: Beihang University, 2014: 3-5(in Chinese). [4] DANG H B, MALOOF A C, ROMALIS M V.Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J].Applied Physics Letters, 2010, 97(15):151110-1-151110-3. [5] LEDBETTER M P, SAVUKOV I M, ACOSTA V M, et al.Spin-exchange-relaxation-free magnetometry with Cs vapor[J].Physical Review A, 2008, 77(3):0334083-1-0334083-7. [6] LU J X, QIAN Z, FANG J C, et al.Suppression of vapor cell temperature error for spin-exchange-relaxation-free magneto-meter[J].Review of Scientific Instruments, 2015, 86(8):0831038-1-0831038-4. [7] LIU G B, LI X F, SUN X P, et al.Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J].Journal of Magnetic Resonance, 2013, 237(7):158-163. [8] 陆吉玺. SERF原子磁强计噪声抑制方法与实验研究[D]. 北京: 北京航空航天大学, 2016: 10-11.LU J X. Methods and experimental study on noise suppression for atomic magnetometer in SERF regime[D]. Beijing: Beihang University, 2016: 10-11(in Chinese). [9] 袁起航, 林贵平, 李广超, 等.电脉冲除冰系统电磁脉冲力仿真分析[J].北京航空航天大学学报, 2016, 42(3):633-638.YUAN Q H, LIN G P, LI G C, et al.Simulation and analysis on electromagnetic impulse force of electro-impulse de-icing system[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3):633-638(in Chinese). [10] BULATOWICZ M. Electrical resistive heaters for magnetically sensitive instruments[C]//45th Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics. Denver: American Physical Society Press, 2014, 59(8): 93. [11] 陈鹏, 葛红娟, 倪一洋, 等.电脉冲除冰系统非线性等效电路分析[J].北京航空航天大学学报, 2015, 41(8):1539-1545.CHEN P, GE H J, NI Y Y, et al.Nonlinear equivalent circuit analysis of electro-impulse de-icing system[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8):1539-1545(in Chinese). [12] 孙建辉, 刘军涛, 徐声伟, 等.高精度微弱脑电检测数模混合控制芯片系统[J].仪器仪表学报, 2016, 37(5):1025-1032.SUN J H, LIU J T, XU S W, et al.Weak brain-EEG signal high resolution detection based on hybrid analog/digital signal control ASIC system[J].Chinese Journal of Scientific Instrument, 2016, 37(5):1025-1032(in Chinese). [13] 罗毅, 施云波, 渠立亮, 等.谐波分析及交流比较的高空温度探测方法研究[J].仪器仪表学报, 2014, 35(4):721-728.LUO Y, SHI Y B, QU L L, et al.Research on atmosphere aloft temperature probing based on harmonic analysis and AC comparison methods[J].Chinese Journal of Scientific Instrument, 2014, 35(4):721-728(in Chinese). [14] 陶蓓, 朱静, 刘玉涛.高精度电阻测量方法及其应用[J].计量与测试技术, 2011, 38(10):35-36. doi: 10.3969/j.issn.1004-6941.2011.10.018TAO B, ZHU J, LIU Y T.The method and application of the higher accuracy resistance measurement[J].Metrology & Measurement Technique, 2011, 38(10):35-36(in Chinese). doi: 10.3969/j.issn.1004-6941.2011.10.018 [15] 王亚刚, 许晓鸣, 邵惠鹤.基于Ziegler-Nichols频率响应方法的自适应PID控制[J].控制工程, 2012, 19(4):607-613.WANG Y G, XU X M, SHAO H H.Adaptive PID controller based on Ziegler-Nichols frequency method[J].Control Engineering of China, 2012, 19(4):607-613(in Chinese). 期刊类型引用(24)
1. 黄润琴,苏珉,刘佳,王涛. 基于小波变换与奇异值分解的飞鸟动态电磁散射特征提取. 广西师范大学学报(自然科学版). 2024(04): 74-89 . 百度学术
2. 刘闪亮,吴仁彪,屈景怡,乔晗,何雨龙. Bi-PPYOLO tiny:一种轻量型的机场无人机检测方法. 安全与环境学报. 2023(02): 480-488 . 百度学术
3. 韩虎虎,祁鑫,王鹤飞,李惠翔,齐吉祥. 基于无人机巡检的光伏面板缺陷识别方法. 电子设计工程. 2023(06): 176-179+184 . 百度学术
4. 薛珊,陈宇超,吕琼莹,曹国华. 基于双支路神经网络的无人机图像识别方法. 计算机仿真. 2023(07): 233-238 . 百度学术
5. 刘佳,徐群玉,陈唯实. 无人机雷达航迹运动特征提取及组合分类方法. 系统工程与电子技术. 2023(10): 3122-3131 . 百度学术
6. 苏志刚,王雪萌. 基于双层特征选择的空中目标分类算法研究. 激光与光电子学进展. 2022(02): 243-251 . 百度学术
7. 睢丙东,苗林星,于国庆. 基于深度学习的无人机目标检测系统. 科技风. 2022(06): 4-6 . 百度学术
8. 陈唯实,黄毅峰,陈小龙,卢贤锋,张洁. 机场探鸟雷达技术发展与应用综述. 航空学报. 2022(01): 184-204 . 百度学术
9. 张虹波,匡银虎. 基于齐次变换的低空无人机防撞导引控制方法. 计算机仿真. 2022(06): 42-46 . 百度学术
10. 何炜琨,柳振明,王晓亮. 微动特征和运动特征融合处理的鸟与旋翼无人机目标辨别方法. 电子测量与仪器学报. 2022(07): 33-43 . 百度学术
11. Weiming TIAN,Linlin FANG,Rui WANG,Weidong LI,Chao ZHOU,Cheng HU. A robust tracking method focusing on target fluctuation and maneuver characteristics. Science China(Information Sciences). 2022(11): 263-280 . 必应学术
12. 刘雷,刘大卫,王晓光,陈俊男,刘东兴. 无人机集群与反无人机集群发展现状及展望. 航空学报. 2022(S1): 4-20 . 百度学术
13. 冯维婷,梁青. 闪烁现象下基于微动补偿的旋转叶片参数估计方法. 信号处理. 2022(12): 2617-2627 . 百度学术
14. 卢晓东,辛佳宁,顾嘉耀,王俊康,程承. 析构时间相关模型的面对称飞行器机动估计. 宇航学报. 2021(02): 167-174 . 百度学术
15. 陈唯实,黄毅峰,陈小龙,卢贤锋,张洁. 基于模型转换频率估计的低空目标分类. 系统工程与电子技术. 2021(04): 927-936 . 百度学术
16. 侯旋,薛飞,陈涛. 无人机目标检测量子多模式识别优化算法. 计算机工程与应用. 2021(07): 228-236 . 百度学术
17. 杨名宇,王浩,王含宇. 基于深度学习与光电探测的无人机防范技术. 液晶与显示. 2021(09): 1323-1330 . 百度学术
18. 苏子康,李春涛,余跃,徐忠楠,王宏伦. 绳系拖曳飞行器高抗扰轨迹跟踪控制. 北京航空航天大学学报. 2021(11): 2234-2248 . 本站查看
19. 屈旭涛,庄东晔,谢海斌. “低慢小”无人机探测方法. 指挥控制与仿真. 2020(02): 128-135 . 百度学术
20. 陈唯实,黄毅峰,陈小龙,卢贤锋. 机场净空区飞鸟与非合作无人机目标识别. 民航学报. 2020(03): 27-33 . 百度学术
21. 陈唯实,黄毅峰,卢贤锋. 多传感器融合的无人机探测技术应用综述. 现代雷达. 2020(06): 15-29 . 百度学术
22. 蒋镕圻,白若楷,彭月平. 低慢小无人机目标探测技术综述. 飞航导弹. 2020(09): 100-105 . 百度学术
23. 陈小龙,陈唯实,饶云华,黄勇,关键,董云龙. 飞鸟与无人机目标雷达探测与识别技术进展与展望. 雷达学报. 2020(05): 803-827 . 百度学术
24. 薛珊,李广青,吕琼莹,毛逸维. 基于卷积神经网络的反无人机系统声音识别方法. 工程科学学报. 2020(11): 1516-1524 . 百度学术
其他类型引用(18)
-