留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孔边倒角裂纹当量初始缺陷尺寸的确定方法

孙晓娜 贺小帆 李玉海

孙晓娜, 贺小帆, 李玉海等 . 孔边倒角裂纹当量初始缺陷尺寸的确定方法[J]. 北京航空航天大学学报, 2018, 44(1): 187-195. doi: 10.13700/j.bh.1001-5965.2016.0985
引用本文: 孙晓娜, 贺小帆, 李玉海等 . 孔边倒角裂纹当量初始缺陷尺寸的确定方法[J]. 北京航空航天大学学报, 2018, 44(1): 187-195. doi: 10.13700/j.bh.1001-5965.2016.0985
SUN Xiaona, HE Xiaofan, LI Yuhaiet al. Determination method of equivalent initial flaw size for crack initiated at hole chamfering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 187-195. doi: 10.13700/j.bh.1001-5965.2016.0985(in Chinese)
Citation: SUN Xiaona, HE Xiaofan, LI Yuhaiet al. Determination method of equivalent initial flaw size for crack initiated at hole chamfering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 187-195. doi: 10.13700/j.bh.1001-5965.2016.0985(in Chinese)

孔边倒角裂纹当量初始缺陷尺寸的确定方法

doi: 10.13700/j.bh.1001-5965.2016.0985
详细信息
    作者简介:

    孙晓娜, 女, 硕士研究生。主要研究方向:结构耐久性

    贺小帆, 男, 博士, 副教授。主要研究方向:疲劳/断裂、结构可靠性与耐久性、腐蚀条件下使用寿命评定

    通讯作者:

    贺小帆, E-mail: xfhe@buaa.edu.cn

  • 中图分类号: V215.5

Determination method of equivalent initial flaw size for crack initiated at hole chamfering

More Information
  • 摘要:

    孔边倒角裂纹是含孔下陷细节的常见裂纹形态,为进行含孔下陷细节的经济寿命评定,需要确定倒角裂纹的原始疲劳质量(IFQ)。首先,为探究倒角对裂纹前缘应力强度因子的影响,进行了有、无倒角2种情况下应力强度因子的有限元分析。计算表明倒角对相对小裂纹的应力强度因子影响显著。其次,为合理表征该种裂纹的IFQ,将初始缺陷当量为萌生于倒角和试件表面交点,前缘为圆弧的初始裂纹,以萌生点到裂纹前缘沿孔径向的距离作为裂纹特征尺寸。最后,采用相对小裂纹扩展方程描述倒角裂纹的扩展规律,反推得到倒角裂纹的当量初始缺陷尺寸(EIFS)分布。统计分析表明,采用本文定义的裂纹特征尺寸得到的EIFS分布参数与应力水平无关。

     

  • 图 1  试件几何形状

    Figure 1.  Geometry of specimen

    图 2  试件典型断口

    Figure 2.  Typical fracture surfaces of specimen

    图 3  有无倒角下的2种裂纹形态

    Figure 3.  Shape of two types of cracks initiated at holes with and without chamfering

    图 4  几何模型

    Figure 4.  Geometry model

    图 5  总体网格

    Figure 5.  Mesh of whole model

    图 6  裂纹前缘附近网格

    Figure 6.  Mesh near crack tip

    图 7  2种裂纹形态下应力强度因子的对比

    Figure 7.  Comparison of stress intensity factors of two types of cracks

    图 8  修理方式1

    Figure 8.  Repair scheme 1

    图 9  修理方式2

    Figure 9.  Repair scheme 2

    图 10  塑性区形状

    Figure 10.  Plastic zone shape

    图 11  裂纹扩展数据

    Figure 11.  Crack growth data

    图 12  相对小裂纹a-t数据

    Figure 12.  a-t data for relatively small crack

    图 13  无量纲化应力强度因子随裂纹尺寸变化曲线

    Figure 13.  Changing curve of non-dimensional stress intensity factor with crack size

    图 14  EIFS值

    Figure 14.  EIFS value

    图 15  分布概率函数曲线

    Figure 15.  Probability distribution function curve

    表  1  7B04-T74铝合金力学性能

    Table  1.   Mechanical properties of 7B04-T74 aluminum alloy

    参数 弹性模量
    E/GPa
    泊松比
    ν
    屈服强度
    σs/MPa
    抗拉强度
    σb/MPa
    数值 70 0.33 450 518
    下载: 导出CSV

    表  2  2种应力水平下Z分布参数估计

    Table  2.   Z distribution parameter estimation for two stress levels

    应力水平
    应力水平1 0.806 0.250
    应力水平2 1.043 0.443
    下载: 导出CSV
  • [1] TONG Y C.Literature review on aircraft structural risk and reliability analysis:DSTO-TR-1110[R].Melboure:DSTO Aeronautical and Maritime Research Labratory, 2001.
    [2] RUDD J L, GRAY T D.Quantification of fastener-hole quality[J].Journal of Aircraft, 1978, 15(3):143-147. doi: 10.2514/3.58332
    [3] RUDD J L.Applications of the equivalent initial quality method:AFFDL-TM-76-83-FBE[R].Dayton:Wright-Patterson AFB, 1977.
    [4] MANNING S D, YANG J N, SHINOZUKA M.USAF durability design handbook:Guidelines for the analysis and design of durable aircraft structures:AFFDL-TR84-3027[R].Dayton:Wright-Patterson AFB, 1984.
    [5] YANG J N.Statistical estimation of economic life for aircraft structures[J].Journal of Aircraft, 1980, 17(7):528-535. doi: 10.2514/3.57935
    [6] BARTER S A, MOLENT L.Fatigue cracking from a corrosion pit in an aircraft bulkhead[J].Engineering Failure Analysis, 2014, 39(4):155-163. https://www.sciencedirect.com/science/article/pii/S1350630714000326
    [7] MOLENT L.A review of equivalent pre-crack sizes in aluminium alloy 7050-T7451[J].Fatigue & Fracture of Engineering Materials & Structures, 2014, 37(10):1055-1074. https://www.sciencedirect.com/science/article/pii/S001379441400280X
    [8] MOLENT L, SUN Q, GREEEN A J.Characterisation of equivalent initial flaw sizes in 7050 aluminium alloy[J].Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(11):916-937. https://www.researchgate.net/publication/229546175_Characterisation_of_equivalent_initial_flaw_sizes_in_7050_aluminium_alloy
    [9] MATTRAND C, BOURINET J M, THÉRET D.Analysis of fatigue crack growth under random load sequences derived from military in-flight load data[C]//ICAF 2011 Structural Integrity:Inuence of Eciency and Green Imper-atives.Berlin:Springer-Verlag, 2011:399-413.
    [10] MATTRAND C, BOURINET J M.Random load sequences and stochastic crack growth based on measured load data[J].Engineering Fracture Mechanics, 2011, 78(17):3030-3048. doi: 10.1016/j.engfracmech.2011.08.022
    [11] XIANG Y, LIU Y. EIFS-based crack growth fatigue life prediction of pitting-corroded test specimens[J].Engineering Fracture Mechanics, 2010, 77(8):1314-1324. doi: 10.1016/j.engfracmech.2010.03.018
    [12] FAWAZ S A.Equivalent initial flaw size testing and analysis of transport aircraft skin splices[J].Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(3):279-290. https://www.researchgate.net/publication/293333775_Equivalent_initial_flaw_size_testing_and_analysis_of_transport_aircraft_skin_splices
    [13] WANG D Y.An investigation of initial fatigue quality:STPZ8860S[R].West Conshohocken:ASTM Special Technical Publication, 1982.
    [14] 航空航天部AFFD系统办公室. 美国空军耐久性手册背景材料: 第Ⅷ卷[M]西安: 航空航天部AFFD系统办公室, 1989.

    AFFD System Engineering Office of the Department of Aeronautics and Astronautics. The background information of USAF durability design handbook:Vol.Ⅷ[M].Xi'an:AFFD System Engineering Office of the Department of Aeronautics and Astronautics, 1989(in Chinese).
    [15] YANG J, MANNING S, RUDD J, et al.Effect of specimen size and notch geometry on equivalent initial flaw size distribution[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit.Reston:AIAA, 1996:385-397.
    [16] 曹淑森, 贺小帆, 杨博霄, 等.夹持边界条件下表面裂纹应力强度因子求解[J].北京航空航天大学学报, 2014, 40(11):1637-1642. http://bhxb.buaa.edu.cn/CN/abstract/abstract13088.shtml

    CAO S S, HE X F, YANG B X, et al.Solution of stress intensity factor of surface cracked geometry with clamped ends[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11):1637-1642(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13088.shtml
    [17] 张行.断裂力学[M].北京:中国宇航出版社, 1990:72-169.

    ZHANG X.Fracture mechanics[M].Beijing:China Aerospace Press, 1990:72-169(in Chinese).
    [18] 刘文珽.概率断裂力学与概率损伤容限/耐久性[M].北京:北京航空航天大学出版社, 1999:144-181.

    LIU W T.Probabilistic fracture mechanics and probability damage tolerance/durability[M]. Beijing:Beihang University Press, 1999:144-181(in Chinese).
    [19] PROVAN J W.Probabilistic fracture mechanics and reliability[M]. Leiden:Martinus Nijhoff Publishers, 1987:70-72.
    [20] 高镇同.疲劳应用统计学[M].北京:国防工业出版社, 1986:277-295.

    GAO Z T. Fatigue application statistics[M]. Beijing:National Defence of Industry Press, 1986:277-295(in Chinese).
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  9
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 录用日期:  2017-03-10
  • 刊出日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答