留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机优化的改进交叉熵方法

任超 张航 李洪双

任超, 张航, 李洪双等 . 随机优化的改进交叉熵方法[J]. 北京航空航天大学学报, 2018, 44(1): 205-214. doi: 10.13700/j.bh.1001-5965.2017.0017
引用本文: 任超, 张航, 李洪双等 . 随机优化的改进交叉熵方法[J]. 北京航空航天大学学报, 2018, 44(1): 205-214. doi: 10.13700/j.bh.1001-5965.2017.0017
REN Chao, ZHANG Hang, LI Hongshuanget al. Stochastic optimization method based on improved cross entropy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 205-214. doi: 10.13700/j.bh.1001-5965.2017.0017(in Chinese)
Citation: REN Chao, ZHANG Hang, LI Hongshuanget al. Stochastic optimization method based on improved cross entropy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 205-214. doi: 10.13700/j.bh.1001-5965.2017.0017(in Chinese)

随机优化的改进交叉熵方法

doi: 10.13700/j.bh.1001-5965.2017.0017
基金项目: 

南京航空航天大学研究生创新基地(实验室)开放基金 kfjj20160113

国家自然科学基金 U1533109

详细信息
    作者简介:

    任超, 男, 硕士研究生。主要研究方向:结构可靠性设计、灵敏度分析、随机优化方法

    张航, 男, 硕士研究生。主要研究方向:结构可靠性设计、灵敏度分析、随机优化方法

    李洪双, 男, 博士, 副教授, 硕士生导师。主要研究方向:飞行器可靠性设计、飞行器结构优化设计

    通讯作者:

    李洪双, E-mail: hongshuangli@nuaa.edu.cn

  • 中图分类号: O224

Stochastic optimization method based on improved cross entropy

Funds: 

Foundation of Graduate Innovation Center in NUAA kfjj20160113

National Natural Science Foundation of China U1533109

More Information
  • 摘要:

    随机优化的交叉熵方法具有高效性和自适应性的特点,在高维和非线性等复杂优化问题中具有巨大的开发潜力。针对传统交叉熵优化方法精度不足的缺点,提出使用“当前精英样本”和“全局精英样本”构建新的参数更新策略,以充分提取迭代历史中的有用信息。采用自适应的平滑策略和变异操作进一步提升计算性能。通过3个计算实例证明,改进后的方法比传统交叉熵方法具有更高的计算精度和更强的全局搜索能力。

     

  • 图 1  算例1目标函数值和最优解迭代曲线(传统交叉熵方法)

    Figure 1.  Iterative curves of objective function value and optimal solution for Example 1(traditional CE method)

    图 2  算例1统计结果(传统交叉熵方法)

    Figure 2.  Statistical results of Example 1 (traditional CE method)

    图 3  算例1目标函数值和最优解迭代曲线(变异操作)

    Figure 3.  Iterative curves of objective function value and optimum solution for Example 1 (with mutation operation)

    图 4  算例1统计结果(变异操作)

    Figure 4.  Statistical results of Example 1 (with mutation operation)

    图 5  算例1目标函数值和最优解迭代曲线(改进交叉熵方法)

    Figure 5.  Iterative curves of objective function value and optimal solution for Example 1(ICE method)

    图 6  算例1统计结果(改进交叉熵方法)

    Figure 6.  Statistical results of Example 1 (ICE method)

    图 7  算例2目标函数值和最优解迭代曲线(传统交叉熵方法)

    Figure 7.  Iterative curves of objective function value and optimal solution for Example 2(traditional CE method)

    图 8  算例2目标函数值和最优解迭代曲线(改进交叉熵方法)

    Figure 8.  Iterative curves of objective function value and optimal solution for Example 2 (ICE method)

    图 9  算例2统计结果

    Figure 9.  Statistical results of Example 2

    图 10  算例3统计结果

    Figure 10.  Statistical results of Example 3

    表  1  不同初值改进前后方法优化结果

    Table  1.   Optimal solutions of method before and after improvement with different initial values

    μ0 SCE(x*) SICE(x*)
    [56.5, 50]T -5 582.658 4 -6968.5867
    [100, 100]T 1.9466×1014 -6968.5868
    [0, 0]T -6289.1210 -6968.5866
    [150, 150]T 1.1289×1016 -6968.5867
    [-150, 150]T 1.1618×1014 -6968.5868
    下载: 导出CSV

    表  2  传统交叉熵和改进交叉熵方法目标函数值变化过程

    Table  2.   Comparison of objective function value in iteration history between traditional CE and ICE methods

    迭代次数 SCE(x*) SICE(x*)
    1 3.046 0×1017 1.870 5×1017
    2 1.885 2×1016 2.409 6×1016
    3 4.116 8×1015 5.599 3×1015
    4 8.374 1×1014 3.043 2×1015
    5 1.273 0×1014 9.092 1×1014
    6 -1.002 9 3.657 2×1014
    9 -1.141 5 1.002 9×1013
    10 -1.312 0 -0.893 3
    50 -1.387 7 -1.508 1
    100 -1.387 7 -1.854 4
    150 -1.387 7 -1.905 2
    200 -1.387 7 -1.905 2
    下载: 导出CSV
  • [1] HAFTKA R T, GVRDAL Z.Elements of structural optimization[M].Dordrecht:Kluwer Academic Publishers, 1990.
    [2] RUBINSTEIN R Y.Optimization of computer simulation models with rare events[J].European Journal of Operational Research, 1997, 99(1):89-112. doi: 10.1016/S0377-2217(96)00385-2
    [3] RUBINSTEIN R Y.The cross-entropy method for combinatorial and continuous optimization[J].Methodology & Computing in Applied Probability, 1999, 1(2):127-190. doi: 10.1023/A:1010091220143.pdf
    [4] HELVIK B E, WITTNER O.Using the cross-entropy method to guide/govern mobile agent's path finding in networks[M].Berlin:Springer, 2001.
    [5] ALON G, KROESE D P, RAVIV T, et al.Application of the cross-entropy method to the buffer allocation problem in a simulation-based environment[J].Annals of Operations Research, 2005, 134(1):137-151. doi: 10.1007/s10479-005-5728-8
    [6] KUO C, YEARGAIN J R, DOWNEY W J, et al.Solving the vehicle routing problem with stochastic demands using the cross-entropy method[J].Annals of Operations Research, 2005, 134(1):153-181. doi: 10.1007/s10479-005-5729-7
    [7] KROESE D P, POROTSKY S, RUBINSTEIN R Y.The cross-entropy method for continuous multi-extremal optimization[J].Methodology & Computing in Applied Probability, 2006, 8(3):383-407. doi: 10.1007/s11009-006-9753-0
    [8] HO S L, YANG S.The cross-entropy method and its application to inverse problems[J].IEEE Transactions on Magnetics, 2010, 46(8):3401-3404. doi: 10.1109/TMAG.2010.2044380
    [9] 丁卫平, 王建东, 陈森博, 等.基于改进混合蛙跳算法的粗糙属性交叉熵优化约简[J].南京大学学报(自然科学), 2014, 50(2):159-166. http://doi.cnki.net/Resolution/Handler?doi=10.13232/j.cnki.jnju.2014.02.007

    DING W P, WANG J D, CHEN S B, et al.Rough attribute reduction with cross-entropy based on improved shuffled frog-leaping algorithm[J].Journal of Nanjing University(Natural Sciences), 2014, 50(2):159-166(in Chinese). http://doi.cnki.net/Resolution/Handler?doi=10.13232/j.cnki.jnju.2014.02.007
    [10] 李国成, 肖庆宪.求解高维函数优化问题的交叉熵蝙蝠算法[J].计算机工程, 2014, 40(10):168-174. doi: 10.3969/j.issn.1000-3428.2014.10.032

    LI G C, XIAO Q X.Cross-entropy bat algorithm for solving high-dimensional function optimization problem[J].Computer Engineering, 2014, 40(10):168-174(in Chinese). doi: 10.3969/j.issn.1000-3428.2014.10.032
    [11] GHIDEY H.Reliability-based design optimization with cross-entropy method[D].Trondheim:Norwegian University of Science and Technology, 2015.
    [12] 李洪双, 马远卓.结构可靠性分析与随机优化设计的统一方法[M].北京:国防工业出版社, 2015:146-147.

    LI H S, MA Y Z.Unified methods for structural reliability analysis and stochastic optimization design[M].Beijing:National Defense Industry Press, 2015:146-147(in Chinese).
    [13] HUI K P, BEAN N, KRAETZL M, et al.The tree cut and merge algorithm for estimation of network reliability[J].Probability in the Engineering & Informational Sciences, 2002, 17(1):23-45. https://core.ac.uk/display/12727453
    [14] 吴烈. 电磁场逆问题鲁棒优化设计理论和算法研究[D]. 杭州: 浙江大学, 2012.

    WU L.Numerical methodologies for robust optimizations of inverse problems[D].Hangzhou:Zhejiang University, 2012(in Chinese).
    [15] LIANG J J, RUNARSSON T P, MEZURA-MONTES E, et al.Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization[R].Singapore:Nanyang Technological University, 2006.
    [16] 彭宏, 杨立洪, 郑咸义, 等.计算工程优化问题的进化策略[J].华南理工大学学报(自然科学版), 1997, 25(12)17-21. doi: 10.3321/j.issn:1000-565X.1997.12.004

    PENG H, YANG L H, ZHENG X Y, et al.A new evolutionary strategy for solving engineering optimization problems[J].Journal of South China University of Technology(Natural Science Edition), 1997, 25(12):17-21(in Chinese). doi: 10.3321/j.issn:1000-565X.1997.12.004
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  106
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-12
  • 录用日期:  2017-05-05
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答