Aerodynamic design of nacelle of blended-wing-body aircraft with distributed propulsion
-
摘要:
整流罩设计对基于分布式动力的翼身融合(BWB)飞机气动特性会产生显著影响。为了揭示在边界层吸入(BLI)效应下整流罩的设计参数对飞机气动特性的影响及其原因,采用计算流体力学(CFD)方法和Morris敏感度分析法对此布局飞机气动特性进行了详细研究,得到了整流罩主要设计参数对飞机气动特性影响的敏感度和耦合关系,并对典型设计参数下的流动特性进行分析。结果表明:对飞机气动特性影响较大的参数是整流罩特征截面2和3的最大厚度,这是因为其增大了当地截面的厚度和弯度,进而影响了整流罩表面的压力分布;在流量系数减小和进气边界弦向位置前移时,最大厚度增大会造成背风面发生局部分离;整流罩特征截面2和3的最大厚度对气动特性具有较强的耦合影响。
-
关键词:
- 翼身融合(BWB)布局 /
- 边界层吸入(BLI) /
- 计算流体力学(CFD) /
- 敏感度分析 /
- 整流罩
Abstract:Nacelle design has a significant effect on aerodynamic performance of blended-wing-body (BWB) aircraft with distributed propulsion. To clarify the effect and its reason of primary nacelle design parameters on aerodynamic performance of BWB aircraft with boundary layer ingestion (BLI) effect, a detailed study was conducted by computational fluid dynamics (CFD) method and Morris sensitivity analysis method. Sensitivity order and coupled effect of primary design parameters on aerodynamic performance were obtained. Flow details of higher sensitivity and greater coupled effect parameters were analyzed under baseline and alternative condition. The results show that the relatively most significant parameters are the maximum thickness of section 2 and 3. The main reason is that local thickness and camber increase, and pressure distribution of whole nacelle surface is changed. Leeward local stall will occur as the maximum thickness increases configuration when mass flow rate decreases and inlet location along the chord direction moves forward. The coupled effect of the maximum thickness of section 2 and 3 on aerodynamic performance is relatively significant.
-
表 1 网格规模验证
Table 1. Validation of mesh size
算例名称 网格规模 CL CD 网格1 907 563 0.411 2 0.021 63 网格2 1 378 251 0.413 7 0.020 71 网格3 2 055 448 0.416 0 0.020 56 表 2 壁面网格高度验证
Table 2. Validation of wall grid height
算例名称 壁面网格高度/m CL CD 网格2 5×10-4 0.413 7 0.020 71 网格4 1×10-3 0.414 8 0.020 52 网格5 3×10-4 0.413 9 0.020 76 表 3 参数的实际变化区间
Table 3. Actual changing interval of parameters
参数 Pi [Pi -l, Pi +u] ti(i=1, 2, 3, 4) 0.047 [0.007, 0.107] xi(i=1, 2, 3, 4) 0.29 [0.25, 0.35] 表 4 t2对气动系数的影响
Table 4. Effect of t2 on aerodynamic coefficients
t2 CL CD CM 0.007 0.411 3 0.019 72 0.037 6 0.047 0.413 7 0.020 71 0.044 9 0.087 0.416 4 0.022 02 0.052 7 表 5 x4对气动系数的影响
Table 5. Effect of x4 on aerodynamic coefficients
x4 CL CD CM 0.25 0.413 5 0.020 70 0.044 7 0.29 0.413 7 0.020 71 0.044 9 0.33 0.413 7 0.020 68 0.044 8 表 6 基本设计参数的区间敏感度排序
Table 6. Interval sensitivity order of basis design parameters
参数 CL CD 流量系数 1.8 0.525 排气方向 1.34 0.32 进气边界弦向位置 0.392 0.28 进气边界高度 0.068 6 0.04 弦向整流罩长度 0.025 7 0.038 6 展向流量分布 0.019 5 0.024 展向进气位置分布 0.006 8 0.027 表 7 t2和t3对气动系数的耦合影响
Table 7. Coupled effect of t2 and t3 onaerodynamic coefficients
气动系数 算例 dcoup dline CL 1 -0.012 4 -0.009 8 -21.1 2 -0.028 7 -0.002 1 -92.8 CD 1 -0.002 6 0.003 2 24.4 2 -0.003 8 -0.004 7 21.3 CM 1 0.045 2 -0.041 8 -7.5 2 -0.040 5 -0.019 1 -147.1 注:算例1、2分别代表t2和t3同时减少和同时增加。 -
[1] LIEBECK R H.Design of the blended wing body subsonic transport[J].Journal of Aircraft, 2004, 41(1):10-25. doi: 10.2514/1.9084 [2] QIN N, VAVALLE A, MOIGNE L A, et al.Aerodynamic considerations of blended wing body aircraft[J].Progress in Aerospace Sciences, 2004, 40(6):321-343. doi: 10.1016/j.paerosci.2004.08.001 [3] LABAN M, ARENDSEN P, ROUWHORST W, et al. A computational design engine for multi-disciplinary optimisation with application to a blended wing body configuration[C]//9th AIAA/ASSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2002. [4] KIM H, LIOU M F, LIOU M S. Mail-slot nacelle shape design for N3-X hybrid wing body configuration[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015: 3805. [5] KO A. The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft[D]. Blacksburg: Virgina Polytechnic Institute and State University, 2003. https://vtechworks.lib.vt.edu/handle/10919/27257 [6] GOHARDANI A S, DOULGERIS G, SINGH R.Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J].Progress in Aerospace Sciences, 2011, 47(5):369-391. doi: 10.1016/j.paerosci.2010.09.001 [7] KIM H D, BROWN G V, FELDER J L. Distributed turboelectric propulsion for hybrid wing body aircraft[C]//9th International Powered Lift Conference. London: Royal Aeronautical Society, 2008. [8] HILEMAN J I, SPAKOVSZKY Z S, DRELA M, et al.Airframe design for silent fuel-efficient aircraft[J].Journal of Aircraft, 2010, 47(3):956-969. doi: 10.2514/1.46545 [9] KO A, LEIFSSON L T, SCHETZ J A, et al. MDO of a blended-wing-body transport aircraft with distributed propulsion: AIAA-2003-6732[R]. Reston: AIAA, 2003. [10] KO A, SCHETZ J A, MASON W H. Assessment of the potential advantages of distributed-propulsion for aircraft[C]//XVIth International Symposium on Air Breathing Engines (ISABE). Reston: AIAA, 2003: 71-79. [11] RODRIGUEZ D L.Multidisciplinary optimization method for designing boundary-layer-ingesting inlets[J].Journal of Aircraft, 2009, 46(3):883-894. doi: 10.2514/1.38755 [12] LUNDBLADH A, GRÖNSTEDT T. Distributed propulsion and turbofan scale effects[C]//ISABE 2005, 17th Symposium on Airbreathing Engine. Reston: AIAA, 2005. [13] LIOU M S, KIM H J, LIOU M F. Aerodynamic design of the hybrid wing body with nacelle: N3-X propulsion-airframe configuration[C]//34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016: 3875. [14] 闫万方, 吴江浩, 张艳来.分布式推进关键参数对BWB飞机气动特性影响[J].北京航空航天大学学报, 2015, 41(6):1055-1065. http://bhxb.buaa.edu.cn/CN/abstract/abstract13289.shtmlYAN W F, WU J H, ZHANG Y L.Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1055-1065(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13289.shtml [15] 项洋, 吴江浩, 张艳来.BLI效应下整流罩设计对翼型气动特性的影响[J].北京航空航天大学学报, 2016, 42(5):945-952. http://bhxb.buaa.edu.cn/CN/abstract/abstract13921.shtmlXIANG Y, WU J H, ZHANG Y L.Effects of cowling design on aerodynamic performance of airfoil with BLI[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):945-952(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13921.shtml [16] NICHOLS M R, KEITH A L. Investigation of a systematic group of NACA 1-series cowlings with and without spinners: NACA-Report-950[R]. Washington, D. C. : U. S. Government Printing Office, 1950. [17] MORRIS M D.Factorial sampling plans for preliminary computational experiments[J].Technometrics, 1991, 33(2):161-174. doi: 10.1080/00401706.1991.10484804