留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布式动力的翼身融合飞机整流罩气动设计

项洋 吴江浩 熊峻江

项洋, 吴江浩, 熊峻江等 . 基于分布式动力的翼身融合飞机整流罩气动设计[J]. 北京航空航天大学学报, 2018, 44(1): 71-81. doi: 10.13700/j.bh.1001-5965.2017.0027
引用本文: 项洋, 吴江浩, 熊峻江等 . 基于分布式动力的翼身融合飞机整流罩气动设计[J]. 北京航空航天大学学报, 2018, 44(1): 71-81. doi: 10.13700/j.bh.1001-5965.2017.0027
XIANG Yang, WU Jianghao, XIONG Junjianget al. Aerodynamic design of nacelle of blended-wing-body aircraft with distributed propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 71-81. doi: 10.13700/j.bh.1001-5965.2017.0027(in Chinese)
Citation: XIANG Yang, WU Jianghao, XIONG Junjianget al. Aerodynamic design of nacelle of blended-wing-body aircraft with distributed propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 71-81. doi: 10.13700/j.bh.1001-5965.2017.0027(in Chinese)

基于分布式动力的翼身融合飞机整流罩气动设计

doi: 10.13700/j.bh.1001-5965.2017.0027
详细信息
    作者简介:

    项洋 男, 博士研究生。主要研究方向:飞行器空气动力学

    吴江浩 男, 博士, 教授, 博士生导师。主要研究方向:飞行器空气动力学

    熊峻江 男, 博士, 教授, 博士生导师。主要研究方向:飞机结构力

    通讯作者:

    吴江浩, E-mail: peng.lei@buaa.edu.cn

  • 中图分类号: V221.3

Aerodynamic design of nacelle of blended-wing-body aircraft with distributed propulsion

More Information
  • 摘要:

    整流罩设计对基于分布式动力的翼身融合(BWB)飞机气动特性会产生显著影响。为了揭示在边界层吸入(BLI)效应下整流罩的设计参数对飞机气动特性的影响及其原因,采用计算流体力学(CFD)方法和Morris敏感度分析法对此布局飞机气动特性进行了详细研究,得到了整流罩主要设计参数对飞机气动特性影响的敏感度和耦合关系,并对典型设计参数下的流动特性进行分析。结果表明:对飞机气动特性影响较大的参数是整流罩特征截面2和3的最大厚度,这是因为其增大了当地截面的厚度和弯度,进而影响了整流罩表面的压力分布;在流量系数减小和进气边界弦向位置前移时,最大厚度增大会造成背风面发生局部分离;整流罩特征截面2和3的最大厚度对气动特性具有较强的耦合影响。

     

  • 图 1  分布式动力BWB飞机的气动布局

    Figure 1.  Aerodynamics configuration of distributed propulsion BWB aircraft

    图 2  整流罩截面几何参数定义

    Figure 2.  Geometric parameter definition of nacelle section

    图 3  计算网格结构

    Figure 3.  Structure of computation mesh

    图 4  Morris法计算的各参数对气动系数影响的均值与标准差

    Figure 4.  Mean values and standard deviations of effects of parameters on aerodynamic coefficients with Morris method

    图 5  t2CL的基本效应分

    Figure 5.  Distribution of CL elementaryeffect with respect to t2

    图 6  t2变化时的压力云图和流线图

    Figure 6.  Pressure contours and stream lineswith variation of t2

    图 7  t2变化时的各截面压力分布

    Figure 7.  Pressure distribution on cross sections with variation of t2

    图 8  x4变化时的压力云图和流线图

    Figure 8.  Pressure contours and stream lines with variation of x4

    图 9  x4变化时的各截面压力分布

    Figure 9.  Pressure distribution on cross sections with variation of x4

    图 10  不同τ下气动系数随t2的变化

    Figure 10.  Variation of aerodynamic coefficients with t2 at different τ

    图 11  不同τ下的压力云图和流线图

    Figure 11.  Pressure contours and stream lines at different τ

    图 12  不同MFR下气动系数随t2的变化

    Figure 12.  Variation of aerodynamic coefficients with t2 at different MFR

    图 13  MFR=0.40时飞机表面和对称面压力云图及喷口流线图

    Figure 13.  Pressure contours of aircraft surface and symmetric plane and stream lines of nozzle at MFR=0.40

    图 14  不同Lf下气动系数随t2的变化

    Figure 14.  Variation of aerodynamic coefficients with t2 at different Lf

    图 15  Lf=0.70时飞机表面和对称面压力分布及喷口流线图

    Figure 15.  Pressure contours of aircraft surface and symmetric plane and stream lines of nozzle at Lf=0.70

    图 16  t2t3耦合变化时的压力分布

    Figure 16.  Pressure distribution with coupled variation of t2 and t3

    表  1  网格规模验证

    Table  1.   Validation of mesh size

    算例名称网格规模CLCD
    网格1907 5630.411 20.021 63
    网格21 378 2510.413 70.020 71
    网格32 055 4480.416 00.020 56
    下载: 导出CSV

    表  2  壁面网格高度验证

    Table  2.   Validation of wall grid height

    算例名称壁面网格高度/mCLCD
    网格25×10-40.413 70.020 71
    网格41×10-30.414 80.020 52
    网格53×10-40.413 90.020 76
    下载: 导出CSV

    表  3  参数的实际变化区间

    Table  3.   Actual changing interval of parameters

    参数Pi[Pi -l, Pi +u]
    ti(i=1, 2, 3, 4)0.047[0.007, 0.107]
    xi(i=1, 2, 3, 4)0.29[0.25, 0.35]
    下载: 导出CSV

    表  4  t2对气动系数的影响

    Table  4.   Effect of t2 on aerodynamic coefficients

    t2CLCDCM
    0.0070.411 30.019 720.037 6
    0.0470.413 70.020 710.044 9
    0.0870.416 40.022 020.052 7
    下载: 导出CSV

    表  5  x4对气动系数的影响

    Table  5.   Effect of x4 on aerodynamic coefficients

    x4CLCDCM
    0.250.413 50.020 700.044 7
    0.290.413 70.020 710.044 9
    0.330.413 70.020 680.044 8
    下载: 导出CSV

    表  6  基本设计参数的区间敏感度排序

    Table  6.   Interval sensitivity order of basis design parameters

    参数CLCD
    流量系数1.80.525
    排气方向1.340.32
    进气边界弦向位置0.3920.28
    进气边界高度0.068 60.04
    弦向整流罩长度0.025 70.038 6
    展向流量分布0.019 50.024
    展向进气位置分布0.006 80.027
    下载: 导出CSV

    表  7  t2t3对气动系数的耦合影响

    Table  7.   Coupled effect of t2 and t3 onaerodynamic coefficients

    气动系数算例dcoupdline
    CL1-0.012 4-0.009 8-21.1
    2-0.028 7-0.002 1-92.8
    CD1-0.002 60.003 224.4
    2-0.003 8-0.004 721.3
    CM10.045 2-0.041 8-7.5
    2-0.040 5-0.019 1-147.1
    注:算例1、2分别代表t2t3同时减少和同时增加。
    下载: 导出CSV
  • [1] LIEBECK R H.Design of the blended wing body subsonic transport[J].Journal of Aircraft, 2004, 41(1):10-25. doi: 10.2514/1.9084
    [2] QIN N, VAVALLE A, MOIGNE L A, et al.Aerodynamic considerations of blended wing body aircraft[J].Progress in Aerospace Sciences, 2004, 40(6):321-343. doi: 10.1016/j.paerosci.2004.08.001
    [3] LABAN M, ARENDSEN P, ROUWHORST W, et al. A computational design engine for multi-disciplinary optimisation with application to a blended wing body configuration[C]//9th AIAA/ASSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2002.
    [4] KIM H, LIOU M F, LIOU M S. Mail-slot nacelle shape design for N3-X hybrid wing body configuration[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015: 3805.
    [5] KO A. The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft[D]. Blacksburg: Virgina Polytechnic Institute and State University, 2003. https://vtechworks.lib.vt.edu/handle/10919/27257
    [6] GOHARDANI A S, DOULGERIS G, SINGH R.Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J].Progress in Aerospace Sciences, 2011, 47(5):369-391. doi: 10.1016/j.paerosci.2010.09.001
    [7] KIM H D, BROWN G V, FELDER J L. Distributed turboelectric propulsion for hybrid wing body aircraft[C]//9th International Powered Lift Conference. London: Royal Aeronautical Society, 2008.
    [8] HILEMAN J I, SPAKOVSZKY Z S, DRELA M, et al.Airframe design for silent fuel-efficient aircraft[J].Journal of Aircraft, 2010, 47(3):956-969. doi: 10.2514/1.46545
    [9] KO A, LEIFSSON L T, SCHETZ J A, et al. MDO of a blended-wing-body transport aircraft with distributed propulsion: AIAA-2003-6732[R]. Reston: AIAA, 2003.
    [10] KO A, SCHETZ J A, MASON W H. Assessment of the potential advantages of distributed-propulsion for aircraft[C]//XVIth International Symposium on Air Breathing Engines (ISABE). Reston: AIAA, 2003: 71-79.
    [11] RODRIGUEZ D L.Multidisciplinary optimization method for designing boundary-layer-ingesting inlets[J].Journal of Aircraft, 2009, 46(3):883-894. doi: 10.2514/1.38755
    [12] LUNDBLADH A, GRÖNSTEDT T. Distributed propulsion and turbofan scale effects[C]//ISABE 2005, 17th Symposium on Airbreathing Engine. Reston: AIAA, 2005.
    [13] LIOU M S, KIM H J, LIOU M F. Aerodynamic design of the hybrid wing body with nacelle: N3-X propulsion-airframe configuration[C]//34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016: 3875.
    [14] 闫万方, 吴江浩, 张艳来.分布式推进关键参数对BWB飞机气动特性影响[J].北京航空航天大学学报, 2015, 41(6):1055-1065. http://bhxb.buaa.edu.cn/CN/abstract/abstract13289.shtml

    YAN W F, WU J H, ZHANG Y L.Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1055-1065(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13289.shtml
    [15] 项洋, 吴江浩, 张艳来.BLI效应下整流罩设计对翼型气动特性的影响[J].北京航空航天大学学报, 2016, 42(5):945-952. http://bhxb.buaa.edu.cn/CN/abstract/abstract13921.shtml

    XIANG Y, WU J H, ZHANG Y L.Effects of cowling design on aerodynamic performance of airfoil with BLI[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):945-952(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13921.shtml
    [16] NICHOLS M R, KEITH A L. Investigation of a systematic group of NACA 1-series cowlings with and without spinners: NACA-Report-950[R]. Washington, D. C. : U. S. Government Printing Office, 1950.
    [17] MORRIS M D.Factorial sampling plans for preliminary computational experiments[J].Technometrics, 1991, 33(2):161-174. doi: 10.1080/00401706.1991.10484804
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  901
  • HTML全文浏览量:  69
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 录用日期:  2017-02-06
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答