-
摘要:
纠错输出编码(ECOC)作为分解框架,将多类分类问题转化为二类分类问题,是解决多类分类问题的有效手段。为了提高ECOC的泛化性能,对ECOC基分类器的设计问题进行了研究。解决这一问题的关键是对ECOC的泛化性能进行估计。留一(LOO)误差作为泛化性能的无偏估计,研究了ECOC留一误差界的估计问题。先给出了ECOC留一误差的定义,基于此定义,再给出了基分类器为支持向量机(SVM),解码方法为线性损失函数解码时,ECOC留一误差的上界和下界。在人工数据集和UCI数据集上的实验表明,ECOC留一误差的上界可以指导基分类器的参数选择,通过基分类器设计可以提高ECOC的泛化性能。此外,ECOC的训练误差可以作为ECOC留一误差的下界,对ECOC留一误差下界的研究可以作为未来的研究方向。
-
关键词:
- 模式识别 /
- 多类分类 /
- 纠错输出编码(ECOC) /
- 泛化性能(LOO) /
- 留一误差
Abstract:Error correcting output codes (ECOC) is a decomposition framework, which can transform a complex multiclass classification problem into a series of two-class classification problems. It can complete one multiclass classification task efficiently. To improve its generalization performance, we studied the design of its base classifier, which is also known as model selection in ECOC. The key point is how to estimate the generalization error of ECOC. Leave-one-out (LOO) error is an almost unbiased estimator of generalization error, so we studied how to estimate the LOO error bounds for ECOC. First, we provided the definition of LOO error for ECOC. And then, based on this definition, upper bound and lower bound of LOO error for ECOC was given under the condition that base classifiers were support vector machines (SVM) and decoding method was linear loss function. The experiments on synthetic dataset and UCI dataset show that the upper bound of LOO error for ECOC leads to good estimates of parameters in base classifiers, and designing base classifiers can improve the generalization performance of ECOC. Furthermore, we also report that training error is one lower bound of LOO error for ECOC, and the application of this lower bound should be studied in the future.
-
表 1 人工数据集的参数设置
Table 1. Parameter setting for synthetic dataset
类别 先验概率 平均值向量 协方差矩阵 C1 P(C1)= μ1=(0, 0)T Σ1= C2 P(C2)= μ2=(0, 5)T Σ2= C3 P(C3)= μ3=(5, 0)T Σ3= C4 P(C4)= μ4=(5, 5)T Σ4= C5 P(C5)= μ5=(2, 3)T Σ5= 表 2 实验中用到的UCI数据集
Table 2. UCI datasets used in experiment
数据集 样本个数 特征维数 类别数 vowel 990 13 11 balance 625 4 3 glass 214 10 6 vehicle 846 18 4 letter 1 214 16 26 segmentation 2 310 19 7 -
[1] NI J, XU X Z, DING S F, et al.An adaptive extreme learning machine algorithm and its application on face recognition[J].International Journal of Computing Science and Mathmatics, 2015, 6(6):611-619. doi: 10.1504/IJCSM.2015.073601 [2] QURESHI M S, QURESHI M B, NABI M G, et al.Handwritten digit recognition system using neural network[J].Energy Procedia, 2011, 13:4326-4336. doi: 10.1016/S1876-6102(14)00454-8 [3] BERKAYA S K, GUNDUZ H, OZSEN O, et al.On circular traffic sign detection and recognition[J].Expert System with Applications, 2016, 48:67-75. doi: 10.1016/j.eswa.2015.11.018 [4] NITHYA R, SANTHI B.Decision tree classifiers for mass classification[J].International Journal of Signal and Imaging System Engineering, 2015, 8(1/2):39-45. doi: 10.1504/IJSISE.2015.067068 [5] 边肇祺, 张学工.模式识别[M].2版.北京:清华大学出版社, 2000:296-303.BIAN Z Q, ZHANG X G.Pattern recognition[M].2nd ed. Beijing:Tsinghua University Press, 2000:296-303. [6] FREUND Y, SHAPIRE R E.A decision-theoretic generalization of online learning and an application to boosting[J].Journal of Computer and System Sciences, 1997, 55(1):119-139. doi: 10.1006/jcss.1997.1504 [7] DIETTERICH T G, BAKIRI G. Solving multiclass learning problems via error-correcting output codes[J].Journal of Artificial Intelligence Research, 1995, 2(1):263-286. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.7289 [8] BAI X L, NIWAS S I, LIN W S, et al.Learning ECOC code matrix for multiclass classification with application to glaucoma diagnosis[J].Journal of Medical Systems, 2016, 40(4):78. doi: 10.1007/s10916-016-0436-2 [9] LIU K H, ZENG Z H, NG V T Y.A hierarchical ensemble of ECOC for cancer classification based on multi-class microarray data[J].Information Sciences, 2016, 349-350:102-118. doi: 10.1016/j.ins.2016.02.028 [10] BAUTISTA M A, ESCALERA S, BARO X, et al.On the design of an ECOC-compliant genetic algorithm[J].Pattern Recognition, 2014, 47(2):865-884. doi: 10.1016/j.patcog.2013.06.019 [11] 雷蕾, 王晓丹, 罗玺, 等.基于特征空间变换的纠错输出编码[J].控制与决策, 2015, 30(9):1597-1602. http://or.nsfc.gov.cn/handle/00001903-5/486483LEI L, WANG X D, LUO X, et al.Error-correcting output codes based on feature space transformation[J].Control and Decision, 2015, 30(9):1597-1602. http://or.nsfc.gov.cn/handle/00001903-5/486483 [12] 雷蕾, 王晓丹, 罗玺, 等.基于SVDD的层次纠错输出编码研究[J].系统工程与电子技术, 2015, 37(8):1916-1921. doi: 10.3969/j.issn.1001-506X.2015.08.30LEI L, WANG X D, LUO X, et al.Hierarchical error-correcting output codes based on SVDD[J].Systems Engineering and Electronics, 2015, 37(8):1916-1921. doi: 10.3969/j.issn.1001-506X.2015.08.30 [13] 周进登, 周红建, 杨云, 等.基于神经网络的纠错输出编码方法研究[J].电子学报, 2013, 41(6):1114-1121. doi: 10.3969/j.issn.0372-2112.2013.06.012ZHOU J D, ZHOU H J, YANG Y, et al.Coding design for error correcting output codes based on neural network[J].Acta Electronica Sinica, 2013, 41(6):1114-1121. doi: 10.3969/j.issn.0372-2112.2013.06.012 [14] ISMAILOGLU F, SPRINGHUIZEN I G, SMIRNOV E, et al.Fractional programming weighted decoding for error-correcting output codes[J].Lecture Note in Computer Science, 2015, 9132:38-50. doi: 10.1007/978-3-319-20248-8 [15] PASSERINI A, PONTIL M, FRASCONI P.New results on error correcting output codes of kernel machines[J].IEEE Transactions on Neural Networks, 2004, 15(1):45-54. doi: 10.1109/TNN.2003.820841 [16] ZHOU J D, WANG X D, ZHOU H J, et al.Decoding design based on posterior probabilities in ternary error-correcting output codes[J].Pattern Recognition, 2012, 45(4):1802-1818. doi: 10.1016/j.patcog.2011.10.009 [17] 雷蕾, 王晓丹, 罗玺, 等.ECOC多类分类研究综述[J].电子学报, 2014, 42(9):1794-1800. doi: 10.3969/j.issn.0372-2112.2014.09.020LEI L, WANG X D, LUO X, et al.An overview of multi-classification based on error-correcting output codes[J].Acta Electronica Sinica, 2014, 42(9):1794-1800. doi: 10.3969/j.issn.0372-2112.2014.09.020 [18] CRAMMER K, SINGER Y.On the learnability and design of output codes for multiclass problems[J].Machine Learning, 2002, 47(2-3):201-233. http://webee.technion.ac.il/people/koby/publications/ecoc-mlj02.pdf [19] ASUNCION A, NEWMAN D. UCI machine learning repository[D]. Irvine: University of California, 2007. [20] 张海, 徐宗本.学习理论综述(Ⅰ):稳定性与泛化性[J].工程数学学报, 2008, 25(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-GCSX200801004.htmZHANG H, XU Z B.A survey on learning theory(Ⅰ):Stability and generalization[J].Chinese Journal of Engineering Mathematics, 2008, 25(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-GCSX200801004.htm