留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纠错输出编码的留一误差界估计

薛爱军 王晓丹

薛爱军, 王晓丹. 纠错输出编码的留一误差界估计[J]. 北京航空航天大学学报, 2018, 44(1): 132-141. doi: 10.13700/j.bh.1001-5965.2017.0031
引用本文: 薛爱军, 王晓丹. 纠错输出编码的留一误差界估计[J]. 北京航空航天大学学报, 2018, 44(1): 132-141. doi: 10.13700/j.bh.1001-5965.2017.0031
XUE Aijun, WANG Xiaodan. Leave-one-out error bounds estimation for error correcting output codes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 132-141. doi: 10.13700/j.bh.1001-5965.2017.0031(in Chinese)
Citation: XUE Aijun, WANG Xiaodan. Leave-one-out error bounds estimation for error correcting output codes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 132-141. doi: 10.13700/j.bh.1001-5965.2017.0031(in Chinese)

纠错输出编码的留一误差界估计

doi: 10.13700/j.bh.1001-5965.2017.0031
基金项目: 

国家自然科学基金 61273275

国家自然科学基金 61703426

详细信息
    作者简介:

    薛爱军 男, 博士研究生。主要研究方向:模式识别

    王晓丹 女, 教授, 博士生导师。主要研究方向:机器学习

    通讯作者:

    王晓丹, E-mail: wang_afeu@126.com

  • 中图分类号: TP391

Leave-one-out error bounds estimation for error correcting output codes

Funds: 

National Natural Science Foundation of China 61273275

National Natural Science Foundation of China 61703426

More Information
  • 摘要:

    纠错输出编码(ECOC)作为分解框架,将多类分类问题转化为二类分类问题,是解决多类分类问题的有效手段。为了提高ECOC的泛化性能,对ECOC基分类器的设计问题进行了研究。解决这一问题的关键是对ECOC的泛化性能进行估计。留一(LOO)误差作为泛化性能的无偏估计,研究了ECOC留一误差界的估计问题。先给出了ECOC留一误差的定义,基于此定义,再给出了基分类器为支持向量机(SVM),解码方法为线性损失函数解码时,ECOC留一误差的上界和下界。在人工数据集和UCI数据集上的实验表明,ECOC留一误差的上界可以指导基分类器的参数选择,通过基分类器设计可以提高ECOC的泛化性能。此外,ECOC的训练误差可以作为ECOC留一误差的下界,对ECOC留一误差下界的研究可以作为未来的研究方向。

     

  • 图 1  4种常见的ECOC

    Figure 1.  Four commonly-used ECOCs

    图 2  人工数据集的数据分布

    Figure 2.  Data distribution of synthetic dataset

    图 3  人工数据集上不同核参数和正则化参数对应的留一误差和留一误差上下界

    Figure 3.  LOO error and LOO error's upper and lower bounds with different kernel parameters andregularization parameters on synthetic dataset

    图 4  UCI数据集上不同核参数下20重交叉验证的结果及留一误差上下界

    Figure 4.  20-fold cross validation results and LOO error's upper and lower bound withdifferent kernel parameters on UCI datasets

    图 5  UCI数据集上不同正则化参数下20重交叉验证的结果及留一误差上下界

    Figure 5.  20-fold cross validation results and LOO error's upper and lower bound withdifferent regularization parameters on UCI datasets

    表  1  人工数据集的参数设置

    Table  1.   Parameter setting for synthetic dataset

    类别先验概率平均值向量协方差矩阵
    C1P(C1)=μ1=(0, 0)TΣ1=
    C2P(C2)=μ2=(0, 5)TΣ2=
    C3P(C3)=μ3=(5, 0)TΣ3=
    C4P(C4)=μ4=(5, 5)TΣ4=
    C5P(C5)=μ5=(2, 3)TΣ5=
    下载: 导出CSV

    表  2  实验中用到的UCI数据集

    Table  2.   UCI datasets used in experiment

    数据集样本个数特征维数类别数
    vowel9901311
    balance62543
    glass214106
    vehicle846184
    letter1 2141626
    segmentation2 310197
    下载: 导出CSV
  • [1] NI J, XU X Z, DING S F, et al.An adaptive extreme learning machine algorithm and its application on face recognition[J].International Journal of Computing Science and Mathmatics, 2015, 6(6):611-619. doi: 10.1504/IJCSM.2015.073601
    [2] QURESHI M S, QURESHI M B, NABI M G, et al.Handwritten digit recognition system using neural network[J].Energy Procedia, 2011, 13:4326-4336. doi: 10.1016/S1876-6102(14)00454-8
    [3] BERKAYA S K, GUNDUZ H, OZSEN O, et al.On circular traffic sign detection and recognition[J].Expert System with Applications, 2016, 48:67-75. doi: 10.1016/j.eswa.2015.11.018
    [4] NITHYA R, SANTHI B.Decision tree classifiers for mass classification[J].International Journal of Signal and Imaging System Engineering, 2015, 8(1/2):39-45. doi: 10.1504/IJSISE.2015.067068
    [5] 边肇祺, 张学工.模式识别[M].2版.北京:清华大学出版社, 2000:296-303.

    BIAN Z Q, ZHANG X G.Pattern recognition[M].2nd ed. Beijing:Tsinghua University Press, 2000:296-303.
    [6] FREUND Y, SHAPIRE R E.A decision-theoretic generalization of online learning and an application to boosting[J].Journal of Computer and System Sciences, 1997, 55(1):119-139. doi: 10.1006/jcss.1997.1504
    [7] DIETTERICH T G, BAKIRI G. Solving multiclass learning problems via error-correcting output codes[J].Journal of Artificial Intelligence Research, 1995, 2(1):263-286. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.7289
    [8] BAI X L, NIWAS S I, LIN W S, et al.Learning ECOC code matrix for multiclass classification with application to glaucoma diagnosis[J].Journal of Medical Systems, 2016, 40(4):78. doi: 10.1007/s10916-016-0436-2
    [9] LIU K H, ZENG Z H, NG V T Y.A hierarchical ensemble of ECOC for cancer classification based on multi-class microarray data[J].Information Sciences, 2016, 349-350:102-118. doi: 10.1016/j.ins.2016.02.028
    [10] BAUTISTA M A, ESCALERA S, BARO X, et al.On the design of an ECOC-compliant genetic algorithm[J].Pattern Recognition, 2014, 47(2):865-884. doi: 10.1016/j.patcog.2013.06.019
    [11] 雷蕾, 王晓丹, 罗玺, 等.基于特征空间变换的纠错输出编码[J].控制与决策, 2015, 30(9):1597-1602. http://or.nsfc.gov.cn/handle/00001903-5/486483

    LEI L, WANG X D, LUO X, et al.Error-correcting output codes based on feature space transformation[J].Control and Decision, 2015, 30(9):1597-1602. http://or.nsfc.gov.cn/handle/00001903-5/486483
    [12] 雷蕾, 王晓丹, 罗玺, 等.基于SVDD的层次纠错输出编码研究[J].系统工程与电子技术, 2015, 37(8):1916-1921. doi: 10.3969/j.issn.1001-506X.2015.08.30

    LEI L, WANG X D, LUO X, et al.Hierarchical error-correcting output codes based on SVDD[J].Systems Engineering and Electronics, 2015, 37(8):1916-1921. doi: 10.3969/j.issn.1001-506X.2015.08.30
    [13] 周进登, 周红建, 杨云, 等.基于神经网络的纠错输出编码方法研究[J].电子学报, 2013, 41(6):1114-1121. doi: 10.3969/j.issn.0372-2112.2013.06.012

    ZHOU J D, ZHOU H J, YANG Y, et al.Coding design for error correcting output codes based on neural network[J].Acta Electronica Sinica, 2013, 41(6):1114-1121. doi: 10.3969/j.issn.0372-2112.2013.06.012
    [14] ISMAILOGLU F, SPRINGHUIZEN I G, SMIRNOV E, et al.Fractional programming weighted decoding for error-correcting output codes[J].Lecture Note in Computer Science, 2015, 9132:38-50. doi: 10.1007/978-3-319-20248-8
    [15] PASSERINI A, PONTIL M, FRASCONI P.New results on error correcting output codes of kernel machines[J].IEEE Transactions on Neural Networks, 2004, 15(1):45-54. doi: 10.1109/TNN.2003.820841
    [16] ZHOU J D, WANG X D, ZHOU H J, et al.Decoding design based on posterior probabilities in ternary error-correcting output codes[J].Pattern Recognition, 2012, 45(4):1802-1818. doi: 10.1016/j.patcog.2011.10.009
    [17] 雷蕾, 王晓丹, 罗玺, 等.ECOC多类分类研究综述[J].电子学报, 2014, 42(9):1794-1800. doi: 10.3969/j.issn.0372-2112.2014.09.020

    LEI L, WANG X D, LUO X, et al.An overview of multi-classification based on error-correcting output codes[J].Acta Electronica Sinica, 2014, 42(9):1794-1800. doi: 10.3969/j.issn.0372-2112.2014.09.020
    [18] CRAMMER K, SINGER Y.On the learnability and design of output codes for multiclass problems[J].Machine Learning, 2002, 47(2-3):201-233. http://webee.technion.ac.il/people/koby/publications/ecoc-mlj02.pdf
    [19] ASUNCION A, NEWMAN D. UCI machine learning repository[D]. Irvine: University of California, 2007.
    [20] 张海, 徐宗本.学习理论综述(Ⅰ):稳定性与泛化性[J].工程数学学报, 2008, 25(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-GCSX200801004.htm

    ZHANG H, XU Z B.A survey on learning theory(Ⅰ):Stability and generalization[J].Chinese Journal of Engineering Mathematics, 2008, 25(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-GCSX200801004.htm
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  793
  • HTML全文浏览量:  67
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-17
  • 录用日期:  2017-05-12
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答