留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共轴刚性双旋翼非定常气动干扰载荷分析

谭剑锋 孙义鸣 王浩文 林长亮

谭剑锋, 孙义鸣, 王浩文, 等 . 共轴刚性双旋翼非定常气动干扰载荷分析[J]. 北京航空航天大学学报, 2018, 44(1): 50-62. doi: 10.13700/j.bh.1001-5965.2017.0033
引用本文: 谭剑锋, 孙义鸣, 王浩文, 等 . 共轴刚性双旋翼非定常气动干扰载荷分析[J]. 北京航空航天大学学报, 2018, 44(1): 50-62. doi: 10.13700/j.bh.1001-5965.2017.0033
TAN Jianfeng, SUN Yiming, WANG Haowen, et al. Analysis of rigid coaxial rotor unsteady interactional aerodynamic loads[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 50-62. doi: 10.13700/j.bh.1001-5965.2017.0033(in Chinese)
Citation: TAN Jianfeng, SUN Yiming, WANG Haowen, et al. Analysis of rigid coaxial rotor unsteady interactional aerodynamic loads[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 50-62. doi: 10.13700/j.bh.1001-5965.2017.0033(in Chinese)

共轴刚性双旋翼非定常气动干扰载荷分析

doi: 10.13700/j.bh.1001-5965.2017.0033
基金项目: 

国家自然科学基金 11502105

江苏省自然科学基金 BK20161537

江苏省高校自然科学研究面上项目 15KJB130004

详细信息
    作者简介:

    谭剑锋  男, 博士, 讲师。主要研究方向:旋翼空气动力学与结构动力学、风机空气动力学

    孙义鸣  男, 硕士研究生。主要研究方向:旋翼空气动力学、风机空气动力学

    王浩文  男, 博士, 教授, 博士生导师。主要研究方向:旋翼动力学、结构强度及振动载荷分析

    林长亮  男, 博士, 高级工程师。主要研究方向:直升机气动设计、总体设计、旋翼结构动力学

    通讯作者:

    谭剑锋, E-mail: Jianfengtan@njtech.edu.cn

  • 中图分类号: V211.52

Analysis of rigid coaxial rotor unsteady interactional aerodynamic loads

Funds: 

National Natural Science Foundation of China 11502105

Natural Science Foundation of Jiangsu Province BK20161537

The General Project of Natural Science Research of Higher Education Institutions of Jiangsu Province, China 15KJB130004

More Information
  • 摘要:

    共轴刚性双旋翼系统提高直升机最大前飞速度,但旋翼振动载荷明显增大。为研究高速共轴刚性双旋翼系统振动载荷特性,须首先分析共轴刚性双旋翼气动干扰下的非定常气动载荷。基于非定常面元法建立满足桨叶前缘和后缘边界条件的旋翼反流区气动模型以体现高速共轴刚性双旋翼后行边反流区影响,且增加共轴刚性双旋翼桨尖涡-桨叶气动干扰模型以体现共轴刚性双旋翼非定常气动干扰影响,并结合基于黏性涡粒子法的共轴刚性双旋翼尾迹模型,构建高速共轴刚性双旋翼气动干扰下的气动载荷分析方法。通过计算前飞状态下的X2共轴刚性双旋翼特征剖面非定常气动载荷时间历程,并与PRASADUM以及基于NASA OVERFLOW和CREATE AV Helios的CFD/CSD计算结果对比,验证本文共轴刚性双旋翼非定常气动载荷分析方法的有效性。相比于PRASADUM,本文分析更好地体现上、下旋翼在前行边和后行边非定常气动载荷的变化特性,并与CFD/CSD计算结果更吻合。分析X2上、下旋翼气动干扰对共轴刚性双旋翼桨叶非定常气动载荷的影响,以及单旋翼与共轴刚性双旋翼非定常气动载荷差异。分析表明,低速状态下的共轴刚性双旋翼非定常气动载荷受双旋翼桨尖涡干扰显著,而高速前飞状态受双旋翼桨叶干扰明显,且表现出桨叶片数整数倍的辐射状干扰特征。

     

  • 图 1  X2高速共轴刚性双旋翼桨叶翼型和网格

    Figure 1.  Airfoil and grid of X2 high-speed rigid coaxial rotor blade

    图 2  高速共轴刚性双旋翼反流区气动模型

    Figure 2.  Reverse flow aerodynamic model of high-speed rigid coaxial rotor

    图 3  X2高速共轴刚性双旋翼桨尖涡和镜面映射

    Figure 3.  Tip vortex of X2 rigid coaxial rotor and mirror mapping of vorticity

    图 4  Harrington共轴双旋翼性能

    Figure 4.  Performance of Harrington coaxial rotor

    图 5  不同前飞速度下的X2旋翼截面载荷

    Figure 5.  Sectional load of X2 rotor at different forward speeds

    图 6  上旋翼后行边桨叶截面涡量(278 km/h)

    Figure 6.  Vorticity of blade section at retreating side of upper rotor (278 km/h)

    图 7  不同前飞速度下上、下旋翼截面载荷

    Figure 7.  Sectional load of upper and lower rotor at different forward speeds

    图 8  不同前飞速度下的X2旋翼尾迹结构

    Figure 8.  Wake structure of X2 rotor at different forward speeds

    图 9  X2旋翼诱导入流分布

    Figure 9.  Induced flow distribution of X2 rotor

    图 10  X2旋翼截面升力分布

    Figure 10.  Sectional force distribution of X2 rotor

    图 11  X2旋翼桨尖涡位置互换(102 km/h)

    Figure 11.  Interchange of tip vortex position of X2 rotor (102 km/h)

    图 12  上、下旋翼诱导入流和截面载荷的频谱特性

    Figure 12.  Frequency spectrum of induced flow and sectional load of upper and lower rotor

    图 13  共轴刚性双旋翼和单旋翼截面载荷与频率

    Figure 13.  Sectional load and frequency of rigid coaxial rotor and single rotor

    图 14  单旋翼与共轴双旋翼的诱导速度和截面升力差异

    Figure 14.  Change in induced velocity and sectional force due to single rotor and rigid coaxial rotor

    表  1  共轴刚性双旋翼系统操纵量(185 km/h)

    Table  1.   Control variables of rigid coaxial rotor system (185 km/h)

    (°)
    变量 PRASADUM[7] CFD[7] 本文
    θ0 5.84 6.38 8.87
    Δθ0 0.32 0.1 0.1
    θ1c 3.38 1.77 0.27
    Δθ1c 0 0 0
    θ1s 0.21 0.34 0.33
    Δθ1s 4.29 4.1 5.7
    下载: 导出CSV
  • [1] ELLER E. X2TM load alleviating controls[C]//The American Helicopter Society 68th Annual Forum. Fairfax, VA: AHS, 2012: 1578-1587.
    [2] TAN J F, WANG H W.Highly efficient unsteady panel time-marching free wake for aerodynamics of rotorcraft[J].Journal of Aircraft, 2014, 51(1):54-61. doi: 10.2514/1.C031807
    [3] GOVINDARAJAN B M, LEISHMAN J G.Curvature corrections to improve the accuracy of free-vortex methods[J].Journal of Aircraft, 2016, 53(2):378-386. doi: 10.2514/1.C033392
    [4] YEO H, JOHNSON W. Investigation of maximum blade loading capability of lift-offset rotors[C]//The AHS 69th Annual Forum. Fairfax, VA: AHS, 2013: 782-797.
    [5] SCHMAUS J, CHOPRA I. Aeromechanics for a high advance ratio coaxial helicopter[C]//The AHS 71st Annual Forum. Fairfax, VA: AHS, 2015: 1139-1153.
    [6] GAFFEY T M, ZHANG C, QUACKENBUSH D T, et al. Aeromechanics of the coaxial compound helicopter[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015: 1-19.
    [7] PASSE B, SRIDHARAN A, BAEDER J. Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight[C]//33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015: 1-29.
    [8] CAO Y H, ZHAO M.Numerical simulation of rotor flowfields based on several spatial discretization schemes[J].Journal of Aircraft, 2012, 49(5):1535-1539. doi: 10.2514/1.C031786
    [9] 许和勇, 叶正寅.悬停共轴双旋翼干扰流动数值模拟[J].航空动力学报, 2011, 26(2):453-457. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkdi201102035&dbname=CJFD&dbcode=CJFQ

    XU H Y, YE Z Y.Numerical simulation of interaction unsteady flows around co-axial rotors in hover[J].Journal of Aerospace Power, 2011, 26(2):453-457(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkdi201102035&dbname=CJFD&dbcode=CJFQ
    [10] 叶靓, 徐国华.共轴式双旋翼悬停流场和气动力的CFD计算[J].空气动力学学报, 2012, 30(4):437-442. https://wenku.baidu.com/view/e7db5729192e45361166f50d.html

    YE L, XU G H.Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J].Acta Aerodynamic Sinica, 2012, 30(4):437-442(in Chinese). https://wenku.baidu.com/view/e7db5729192e45361166f50d.html
    [11] 朱正, 招启军, 李鹏.悬停状态共轴刚性双旋翼非定常流动干扰机理研究[J].航空学报, 2016, 37(2):568-578. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201602020&dbname=CJFD&dbcode=CJFQ

    ZHU Z, ZHAO Q J, LI P.Investigations on unsteady flow interaction mechanism of coaxial rigid rotors in hover[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(2):568-578(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201602020&dbname=CJFD&dbcode=CJFQ
    [12] SINGH R, KANG H. Computational investigations of transient loads and blade deformations on coaxial rotor systems[C]//33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015: 101-111.
    [13] SINGH R, KANG H, BHAGWAT M, et al. Computational and experimental study of coaxial rotor steady and vibratory loads[C]//54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 1-10.
    [14] KOMERATH N M, SMITH M J, TUNG C.A review of rotor wake physics and modeling[J].Journal of the American Helicopter Society, 2011, 56(2):022006-1-022006-21. http://www.ingentaconnect.com/content/ahs/jahs/2011/00000056/00000002/art00006
    [15] TAN J F, WANG H W.Simulating unsteady aerodynamics of helicopter rotor with panel/viscous vortex particle method[J].Aerospace Science and Technology, 2013, 30(1):255-268. doi: 10.1016/j.ast.2013.08.010
    [16] HE C J, ZHAO J G.Modeling rotor wake dynamics with viscous vortex particle method[J].AIAA Journal, 2009, 47(4):902-915. doi: 10.2514/1.36466
    [17] 谭剑锋, 王浩文, 吴超, 等.基于非定常面元/黏性涡粒子混合法的旋翼/平尾非定常气动干扰研究[J].航空学报, 2014, 35(3):643-656. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201403005&dbname=CJFD&dbcode=CJFQ

    TAN J F, WANG H W, WU C, et al.Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):643-656(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201403005&dbname=CJFD&dbcode=CJFQ
    [18] 谭剑锋.直升机旋翼对尾桨非定常气动载荷的影响[J].航空学报, 2015, 36(10):3228-3240. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201510004&dbname=CJFD&dbcode=CJFQ

    TAN J F.Influence of helicopter rotor on tail rotor unsteady aerodynamic loads[J].Acta Aeronauica et Astronautica Sinica, 2015, 36(10):3228-3240(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201510004&dbname=CJFD&dbcode=CJFQ
    [19] 陈全龙, 韩景龙, 员海玮.前行桨叶概念旋翼动力学分析方法[J].航空学报, 2014, 35(9):2451-2460. https://www.wenkuxiazai.com/doc/acfb4232f7ec4afe04a1dfbb-3.html

    CHEN Q L, HAN J L, YUN H W.Analytical method for advancing blade concept rotor dynamics[J].Acta Aeronautica et Astronautica Sincia, 2014, 35(9):2451-2460(in Chinese). https://www.wenkuxiazai.com/doc/acfb4232f7ec4afe04a1dfbb-3.html
    [20] 袁野, 陈仁良, 李攀.共轴刚性旋翼飞行器配平特性及验证[J].南京航空航天大学学报, 2016, 48(2):186-193. http://www.doc88.com/p-2377625535504.html

    YUAN Y, CHEN R L, LI P.Trim characteristics and verification of coaxial rigid rotor airfraft[J].Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2):186-193(in Chinese). http://www.doc88.com/p-2377625535504.html
    [21] HARRINGTON R D. Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor: TN-2318[R]. Washington, D. C. : NASA, 1951.
    [22] DINGELADEIN R C. Wind-tunnel studies of the performance of multirotor configurations: TN-3236[R]. Washington, D. C. : NASA, 1954.
    [23] WALSH D, WEINER S, ARIFIAN K, et al. High airspeed testing of the Sikorsky X2 technology TM demonstrator[C]//The 67th Annual Forum of the AHS International. Fairfax, VA: AHS, 2011: 2999-3010.
    [24] 高正, 陈仁良.直升机飞行动力学[M].北京:科学出版社, 2003:40-42.

    GAO Z, CHEN R L.Flight dynamics of helicopter[M].Beijing:Science Press, 2003:40-42(in Chinese).
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  980
  • HTML全文浏览量:  196
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 录用日期:  2017-08-11
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答