Strain measurement and stress prediction methods of metal layer in fiber metal laminates
-
摘要:
纤维金属层板作为一种新型复合材料,已开始应用于航空航天领域。脱离传统应变测量方法,应用一种新测量方法——数字化光学应变法,实现了层板中金属层应变的测量;同时以子层刚度理论获得层板的等效刚度矩阵,修正经典层板理论中整体刚度矩阵的求解方法,实现了金属层应力的更准确预测。以纤维增强铝锂合金2/1及3/2层板为例,使用光学应变法测量其金属层应变进而计算金属层应力,利用有限元仿真分析、经典层板理论及修正方法分别对其进行金属层应力预测。通过对比光学应变测量结果和有限元仿真结果,2/1及3/2层板光学应变测量结果与仿真结果最大误差分别为2.12%和3.68%,验证了新测量方法的准确性及实用性;通过对比光学应变测量结果和层板理论预测结果,2/1及3/2层板模型修正后结果比修正前准确率分别提升了2.91%和5.83%,验证了修正模型的有效性及先进性。
Abstract:Fiber metal laminates, as a new-type composite material, have been applied in aerospace field. Digital optical strain method is used to realize strain measurement of metal layer instead of traditional method of strain measurement. Meanwhile, in order to predict the stress distribution in metal layer accurately, the global stiffness matrix obtained from classic laminate theory is modified by the equivalent stiffness matrix from sub-laminate stiffness theory. Taking 2/1 and 3/2 laminates of glass fiber reinforced Al-Li alloy as an example, the stress distribution in metal layer of the laminates is determined based on the measured strain, finite element analysis, classical laminate theory and modified method. The comparison of stress distributions obtained from the measured strain and finite element analysis shows that the maximum errors are only 2.12% and 3.68% for 2/1 and 3/2 laminates, respectively, which verifies the accuracy and practicability of the optical strain method. By comparing the stress distributions from the optical strain method and laminate theory, the prediction accuracy of the modified model increases by 2.91% and 5.83% compared with that of original model for 2/1 and 3/2 laminates, respectively, which proves the effectiveness and advancement of the modified model.
-
表 1 不同坐标系下坐标轴间的余弦值
Table 1. Cosine value between coordinate axes in different coordinate systems
坐标轴 x y z 1 l1 m1 n1 2 l2 m2 n2 3 l3 m3 n3 表 2 层板组分材料属性及尺寸
Table 2. Material properties and sizes of laminates' components
材料 弹性模量/GPa 泊松比 厚度/mm 金属层 72.4 0.3 1.9 预浸料层 54.6 0.252 0.9 -
[1] HOMAN J J.Fatigue initiation in fiber metal laminates[J].International Journal of Fatigue, 2006, 28(4):366-374. doi: 10.1016/j.ijfatigue.2005.07.030 [2] 郭亚军, 吴学仁.纤维金属层板疲劳裂纹扩展速率与寿命预测的唯象模型[J].航空学报, 1998, 19(3):275-282. https://www.hanspub.org/journal/PaperInformation.aspx?paperID=15123GUO Y J, WU X R.Phenomenological model for predicting fatigue crack growth in fiber reinforced metal laminates[J].Acta Aeronautica et Astronautica Sinica, 1998, 19(3):275-282(in Chinese). https://www.hanspub.org/journal/PaperInformation.aspx?paperID=15123 [3] CHANG P Y, YEH P C, YANG J M.Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates[J].Materials Science and Engineering A, 2008, 496:273-280. doi: 10.1016/j.msea.2008.07.041 [4] FRIZZELL R M, MCCRATHY C T, MCCARTHY M A.An experimental investigation into the progression of damage in pin-loaded fiber metal laminates[J].Composites Part B:Engineering, 2008, 39(6):907-925. doi: 10.1016/j.compositesb.2008.01.007 [5] MARISSEN R.Fatigue crack growth in ARALL:A hybrid aluminum-aramid composite material crack growth mechanisms and quantitative predictions of the crack growth rates[D].Delft:Delft University of Technology, 1988. [6] ALDERLIESTEN R C.Development of an empirical fatigue crack growth prediction model for the fibre metal laminate glare[D].Delft:Delft University of Technology, 1999. [7] 郭亚军. 纤维金属层板的疲劳损伤与寿命预测[D]. 北京: 北京航空材料研究院, 1997.GUO Y J. Fatigue damage and life prediction of fiber reinforced metal laminates[D].Beijing:Beijing Institute of Aeronautical Materials, 1997(in Chinese). [8] KIEBOOM O.Fatigue crack initiation and early crack growth in glare at different temperatures[D]. Delft:Delft University of Technology, 2000. [9] MURPHY K, DUKE J.A rugged optical fiber interferometer for strain measurements inside a composite material laminate[J].Journal of Composites, Technology and Research, 1988, 10(1):11-15. doi: 10.1520/CTR10269J [10] 马子广, 陈庆童, 王卫卫.复合材料层压板开孔拉伸力学性能探究[J].直升机技术, 2015(1):64-69. doi: 10.3969/j.issn.1000-2278.2014.02.007MA Z G, CHEN Q T, WANG W W.The exploring of composite materials' mechanical properties under tensile loading[J].Helicopter Technique, 2015(1):64-69(in Chinese). doi: 10.3969/j.issn.1000-2278.2014.02.007 [11] 屈蓓, 付小龙, 何俊武, 等.非接触式光学应变测量技术研究进展[J].计测技术, 2013, 33(5):10-15. http://www.doc88.com/p-5428069842068.htmlQU B, FU X L, HE J W, et al.Research on optical non-contact strain measurement[J].Metrology & Measurement Technology, 2013, 33(5):10-15(in Chinese). http://www.doc88.com/p-5428069842068.html [12] 耿红霞, 付朝华, 蒋小林, 等.光学应变测量系统在研究生实验教学中的应用[J].实验室研究与探索, 2015, 34(3):220-224. https://www.wenkuxiazai.com/doc/74ae6dcb28ea81c758f5784c.htmlGENG H X, FU C H, JIANG X L, et al.Application of optical strain measurement system in experiment teaching for postgraduates[J].Re-search and Exploration in Laboratory, 2015, 34(3):220-224(in Chinese). https://www.wenkuxiazai.com/doc/74ae6dcb28ea81c758f5784c.html [13] 闻柏承, 顾震隆.带或不带脱层的复合材料层板强度的预报[J].复合材料学报, 1989, 2(1):48-54.WEN B C, GU Z L.Probabilistic prediction of laminates with or without delamination[J].Acta Materiae Compositae Sinica, 1989, 2(1):48-54(in Chinese). [14] 甄文强, 王波, 李潘, 等.平面编织C/SiC复合材料层合板偏轴拉伸性能研究[J].机械强度, 2014, 36(1):856-861. http://manu24.magtech.com.cn/fhcl/CN/abstract/abstract13085.shtmlZHEN W Q, WANG B, LI P, et al.Study of off-axis tensile properties of plain-woven C/SiC composites[J].Journal of Mechanical Strength, 2014, 36(1):856-861(in Chinese). http://manu24.magtech.com.cn/fhcl/CN/abstract/abstract13085.shtml [15] SPRONK S W F, SEN I, ALEDRLIESTEN R C.Predicting fatigue crack initiation in fibre metal laminates based on metal fatigue test data[J].International Journal of Fatigue, 2015, 70:428-439. doi: 10.1016/j.ijfatigue.2014.07.004 [16] SUN C T, LI S J.Three dimensional effective elastic constants for thick laminates[J].Composite Material, 1988, 22(7):629-639. doi: 10.1177/002199838802200703 [17] BRUNBAUER J, PINTER G.Fatigue life prediction of carbon fibre reinforced laminates by using cycle-dependent classical laminate theory[J].Composites Part B:Engineering, 2015, 70:167-174. doi: 10.1016/j.compositesb.2014.11.015 [18] 张振瀛.复合材料力学基础[M].北京:航空工业出版社, 1989:10.ZHANG Z Y.Mechanical basis of composite[M].Beijing:Aviation Industry Press, 1989:10(in Chinese). [19] 赵美英, 陶梅贞.复合材料结构力与结构设计[M].西安:西北工业大学出版社, 2007:12.ZHAO M Y, TAO M Z.Structural mechanics and structural design of composite[M].Xi'an:Northwestern Polytechnical University Press, 2007:12(in Chinese). [20] 孟维迎. 大型风机叶片复合纤维性能等效算法研究及应用[D]. 呼和浩特: 内蒙古工业大学, 2013.MENG W Y.Research and application of performance equivalence agorithm of composite for large scale wind turbine blade[D].Huhhot:Inner Mongolia University of Technology, 2013(in Chinese). [21] 孙鹏文, 岳彩宾, 张兰挺, 等.基于子层刚度法性能等效的风机叶片分析研究[J].太阳能学报, 2013, 34(11):1974-1977. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201427034.htmSUN P W, YUE C B, ZHANG L T, et al.Research on wind turbine blade analysis of composite equivalent elastic constants based on sub-laminate stiffness method[J].Acta Energiae Solaris Sinica, 2013, 34(11):1974-1977(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201427034.htm