留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维金属层板金属层应变测量及应力预测方法

孟维迎 谢里阳 胡杰鑫 吕骁 秦波 王博文

孟维迎, 谢里阳, 胡杰鑫, 等 . 纤维金属层板金属层应变测量及应力预测方法[J]. 北京航空航天大学学报, 2018, 44(1): 142-150. doi: 10.13700/j.bh.1001-5965.2017.0035
引用本文: 孟维迎, 谢里阳, 胡杰鑫, 等 . 纤维金属层板金属层应变测量及应力预测方法[J]. 北京航空航天大学学报, 2018, 44(1): 142-150. doi: 10.13700/j.bh.1001-5965.2017.0035
MENG Weiying, XIE Liyang, HU Jiexin, et al. Strain measurement and stress prediction methods of metal layer in fiber metal laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 142-150. doi: 10.13700/j.bh.1001-5965.2017.0035(in Chinese)
Citation: MENG Weiying, XIE Liyang, HU Jiexin, et al. Strain measurement and stress prediction methods of metal layer in fiber metal laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 142-150. doi: 10.13700/j.bh.1001-5965.2017.0035(in Chinese)

纤维金属层板金属层应变测量及应力预测方法

doi: 10.13700/j.bh.1001-5965.2017.0035
基金项目: 

国家自然科学基金 51335003

辽宁重大装备制造协同创新中心 

详细信息
    作者简介:

    孟维迎   男, 博士研究生。主要研究方向:纤维金属层板疲劳寿命性能

    谢里阳   男, 博士, 教授, 博士生导师。主要研究方向:机械疲劳强度与可靠性

    通讯作者:

    谢里阳, E-mail: lyxie@me.neu.edu.cn

  • 中图分类号: V257

Strain measurement and stress prediction methods of metal layer in fiber metal laminates

Funds: 

National Natural Science Foundation of China 51335003

Subsidized by the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning 

More Information
  • 摘要:

    纤维金属层板作为一种新型复合材料,已开始应用于航空航天领域。脱离传统应变测量方法,应用一种新测量方法——数字化光学应变法,实现了层板中金属层应变的测量;同时以子层刚度理论获得层板的等效刚度矩阵,修正经典层板理论中整体刚度矩阵的求解方法,实现了金属层应力的更准确预测。以纤维增强铝锂合金2/1及3/2层板为例,使用光学应变法测量其金属层应变进而计算金属层应力,利用有限元仿真分析、经典层板理论及修正方法分别对其进行金属层应力预测。通过对比光学应变测量结果和有限元仿真结果,2/1及3/2层板光学应变测量结果与仿真结果最大误差分别为2.12%和3.68%,验证了新测量方法的准确性及实用性;通过对比光学应变测量结果和层板理论预测结果,2/1及3/2层板模型修正后结果比修正前准确率分别提升了2.91%和5.83%,验证了修正模型的有效性及先进性。

     

  • 图 1  数字化光学应变仪测试系统

    Figure 1.  Testing system of digital optical strain gauge

    图 2  原始试样及喷涂试样照片

    Figure 2.  Photos of original and sprayed specimen

    图 3  试样孔心截面Y向应变

    Figure 3.  Y-direction strain of specimen section through pinhole center

    图 4  试样孔心水平截面应变

    Figure 4.  Strain of specimen horizontal section through pinhole center

    图 5  铝锂合金层板试件

    Figure 5.  Test specimen of Al-Li alloy laminates

    图 6  2/1及3/2层板结构

    Figure 6.  Structure of 2/1 and 3/2 laminates

    图 7  2/1及3/2层板几何模型

    Figure 7.  Geometric models of 2/1 and 3/2 laminates

    图 8  有限元模型网格划分情况

    Figure 8.  Meshing case of finite element model

    图 9  有限元模型边界条件

    Figure 9.  Boundary conditions of finite element model

    图 10  有限元模型应力分析结果

    Figure 10.  Stress analysis results of finite element model

    图 11  2/1层板金属层最大应力测量及预测结果

    Figure 11.  Measurement and prediction results of maximum stress in metal layer of 2/1 laminates

    图 12  3/2层板金属层最大应力测量及预测结果

    Figure 12.  Measurement and prediction results of maximum stress in metal layer of 3/2 laminates

    表  1  不同坐标系下坐标轴间的余弦值

    Table  1.   Cosine value between coordinate axes in different coordinate systems

    坐标轴 x y z
    1 l1 m1 n1
    2 l2 m2 n2
    3 l3 m3 n3
    下载: 导出CSV

    表  2  层板组分材料属性及尺寸

    Table  2.   Material properties and sizes of laminates' components

    材料 弹性模量/GPa 泊松比 厚度/mm
    金属层 72.4 0.3 1.9
    预浸料层 54.6 0.252 0.9
    下载: 导出CSV
  • [1] HOMAN J J.Fatigue initiation in fiber metal laminates[J].International Journal of Fatigue, 2006, 28(4):366-374. doi: 10.1016/j.ijfatigue.2005.07.030
    [2] 郭亚军, 吴学仁.纤维金属层板疲劳裂纹扩展速率与寿命预测的唯象模型[J].航空学报, 1998, 19(3):275-282. https://www.hanspub.org/journal/PaperInformation.aspx?paperID=15123

    GUO Y J, WU X R.Phenomenological model for predicting fatigue crack growth in fiber reinforced metal laminates[J].Acta Aeronautica et Astronautica Sinica, 1998, 19(3):275-282(in Chinese). https://www.hanspub.org/journal/PaperInformation.aspx?paperID=15123
    [3] CHANG P Y, YEH P C, YANG J M.Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates[J].Materials Science and Engineering A, 2008, 496:273-280. doi: 10.1016/j.msea.2008.07.041
    [4] FRIZZELL R M, MCCRATHY C T, MCCARTHY M A.An experimental investigation into the progression of damage in pin-loaded fiber metal laminates[J].Composites Part B:Engineering, 2008, 39(6):907-925. doi: 10.1016/j.compositesb.2008.01.007
    [5] MARISSEN R.Fatigue crack growth in ARALL:A hybrid aluminum-aramid composite material crack growth mechanisms and quantitative predictions of the crack growth rates[D].Delft:Delft University of Technology, 1988.
    [6] ALDERLIESTEN R C.Development of an empirical fatigue crack growth prediction model for the fibre metal laminate glare[D].Delft:Delft University of Technology, 1999.
    [7] 郭亚军. 纤维金属层板的疲劳损伤与寿命预测[D]. 北京: 北京航空材料研究院, 1997.

    GUO Y J. Fatigue damage and life prediction of fiber reinforced metal laminates[D].Beijing:Beijing Institute of Aeronautical Materials, 1997(in Chinese).
    [8] KIEBOOM O.Fatigue crack initiation and early crack growth in glare at different temperatures[D]. Delft:Delft University of Technology, 2000.
    [9] MURPHY K, DUKE J.A rugged optical fiber interferometer for strain measurements inside a composite material laminate[J].Journal of Composites, Technology and Research, 1988, 10(1):11-15. doi: 10.1520/CTR10269J
    [10] 马子广, 陈庆童, 王卫卫.复合材料层压板开孔拉伸力学性能探究[J].直升机技术, 2015(1):64-69. doi: 10.3969/j.issn.1000-2278.2014.02.007

    MA Z G, CHEN Q T, WANG W W.The exploring of composite materials' mechanical properties under tensile loading[J].Helicopter Technique, 2015(1):64-69(in Chinese). doi: 10.3969/j.issn.1000-2278.2014.02.007
    [11] 屈蓓, 付小龙, 何俊武, 等.非接触式光学应变测量技术研究进展[J].计测技术, 2013, 33(5):10-15. http://www.doc88.com/p-5428069842068.html

    QU B, FU X L, HE J W, et al.Research on optical non-contact strain measurement[J].Metrology & Measurement Technology, 2013, 33(5):10-15(in Chinese). http://www.doc88.com/p-5428069842068.html
    [12] 耿红霞, 付朝华, 蒋小林, 等.光学应变测量系统在研究生实验教学中的应用[J].实验室研究与探索, 2015, 34(3):220-224. https://www.wenkuxiazai.com/doc/74ae6dcb28ea81c758f5784c.html

    GENG H X, FU C H, JIANG X L, et al.Application of optical strain measurement system in experiment teaching for postgraduates[J].Re-search and Exploration in Laboratory, 2015, 34(3):220-224(in Chinese). https://www.wenkuxiazai.com/doc/74ae6dcb28ea81c758f5784c.html
    [13] 闻柏承, 顾震隆.带或不带脱层的复合材料层板强度的预报[J].复合材料学报, 1989, 2(1):48-54.

    WEN B C, GU Z L.Probabilistic prediction of laminates with or without delamination[J].Acta Materiae Compositae Sinica, 1989, 2(1):48-54(in Chinese).
    [14] 甄文强, 王波, 李潘, 等.平面编织C/SiC复合材料层合板偏轴拉伸性能研究[J].机械强度, 2014, 36(1):856-861. http://manu24.magtech.com.cn/fhcl/CN/abstract/abstract13085.shtml

    ZHEN W Q, WANG B, LI P, et al.Study of off-axis tensile properties of plain-woven C/SiC composites[J].Journal of Mechanical Strength, 2014, 36(1):856-861(in Chinese). http://manu24.magtech.com.cn/fhcl/CN/abstract/abstract13085.shtml
    [15] SPRONK S W F, SEN I, ALEDRLIESTEN R C.Predicting fatigue crack initiation in fibre metal laminates based on metal fatigue test data[J].International Journal of Fatigue, 2015, 70:428-439. doi: 10.1016/j.ijfatigue.2014.07.004
    [16] SUN C T, LI S J.Three dimensional effective elastic constants for thick laminates[J].Composite Material, 1988, 22(7):629-639. doi: 10.1177/002199838802200703
    [17] BRUNBAUER J, PINTER G.Fatigue life prediction of carbon fibre reinforced laminates by using cycle-dependent classical laminate theory[J].Composites Part B:Engineering, 2015, 70:167-174. doi: 10.1016/j.compositesb.2014.11.015
    [18] 张振瀛.复合材料力学基础[M].北京:航空工业出版社, 1989:10.

    ZHANG Z Y.Mechanical basis of composite[M].Beijing:Aviation Industry Press, 1989:10(in Chinese).
    [19] 赵美英, 陶梅贞.复合材料结构力与结构设计[M].西安:西北工业大学出版社, 2007:12.

    ZHAO M Y, TAO M Z.Structural mechanics and structural design of composite[M].Xi'an:Northwestern Polytechnical University Press, 2007:12(in Chinese).
    [20] 孟维迎. 大型风机叶片复合纤维性能等效算法研究及应用[D]. 呼和浩特: 内蒙古工业大学, 2013.

    MENG W Y.Research and application of performance equivalence agorithm of composite for large scale wind turbine blade[D].Huhhot:Inner Mongolia University of Technology, 2013(in Chinese).
    [21] 孙鹏文, 岳彩宾, 张兰挺, 等.基于子层刚度法性能等效的风机叶片分析研究[J].太阳能学报, 2013, 34(11):1974-1977. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201427034.htm

    SUN P W, YUE C B, ZHANG L T, et al.Research on wind turbine blade analysis of composite equivalent elastic constants based on sub-laminate stiffness method[J].Acta Energiae Solaris Sinica, 2013, 34(11):1974-1977(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201427034.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  776
  • HTML全文浏览量:  265
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 录用日期:  2017-03-17
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答