-
摘要:
航空燃料安定性和热沉对飞机和发动机工作可靠性、飞机飞行安全及战术性能的发挥有重要作用。利用热重-差热分析联用仪研究了2种典型微藻航油的热氧化安定性和热沉,并与标准航空喷气燃料RP-3进行了对比。结果表明:混合生物油的失重终点温度和最大失重点的温度与标准航空喷气燃料RP-3相比均向高温区移动。在失重区间内,除了物理热沉还有化学热沉的贡献。在热重曲线中定义了2个无量纲参数:引发温度和燃尽指数,引发温度表征起始裂解温度,燃尽指数表征沉积特性。2个参数结合可以较好地诠释燃料的热安定性和热沉。球等鞭金藻油高碳数烷烃在提高热沉基础上导致碳沉积的形成,但小球藻油在热沉提高的基础上,并没有形成碳沉积。说明通过有效控制高碳数烷烃分配比例增加其热沉并控制其积碳在理论和技术上是可行的。
Abstract:The thermal stability and heat sink of aviation fuel play an important role in the reliability, safety and performance of aircraft and engine. Two types of typical microalgae aviation fuel were investigated to assess thermal stability and heat sink by thermo-gravimetric-differential scanning calorimetry in comparison with the standard turbine jetfuels RP-3. The results show that the temperatures of the end point and maximum weight loss point are higher than that of the standard turbine jetfuels RP-3, which indicates that heat sink includes both physical heat sink and chemical heat sink in weight loss interval. The thermo-gravimetric curve defines two dimensionless parameters including initiation temperature and burnout index, which represent the initial decomposition temperature and the deposition characteristics respectively. The combination of the two parameters can be used to assess the thermal stability and heat sink. Isochrysis based blend aviation fuel presented the carbon deposit with the increase of heat sink, while chlorella based blend aviation fuel did not present the carbon deposit with the increase of heat sink. The results indicate that optimizing the composition of alkane with high carbon number could increase heat sink and decrease carbon deposit. It is feasible both theoretically and technically.
-
Key words:
- microalgae aviation fuel /
- thermal stability /
- heat sink /
- initiation temperature /
- burnout index
-
表 1 微藻航空燃料50%掺混比与RP-3组成
Table 1. Composition of mixed RP-3 and microalgae aviation fuel 50%
% 组分 碳数分布 小球藻油+RP-3 球等鞭金藻油+RP-3 RP-3 正构烷烃 C8~C18 62.5 62.5 25.03 C14 3.3 11.3 2.3 C16 23.7 11.7 0.19 C18 25.5 29.5 — 异构烷烃 C8~C16 10.0 10.0 20.06 环烷烃 C8~C14 5.3 5.3 10.56 芳香烃 C7~C13 14.4 14.4 28.75 烯烃 C9~C11 1.5 1.5 3.06 其他 6.3 6.3 12.5 表 2 引发温度与燃尽指数
Table 2. Initiation temperature and burnout index
航空燃料类型 组分 引发温度/℃ 最大失重温度/℃ 最大吸热温度/℃ 燃尽指数/% C14 C16 C18 小球藻油+RP-3 3.3 23.7 25.5 93.1 139 143 100 球等鞭金藻油+RP-3 11.3 11.7 29.5 91.9 149 151 99.8 RP-3 2.3 0.19 — 61.9 90.2 94.5 100 -
[1] 赵晶, 郭放, 阿鲁斯, 等.未来航空燃料原料可持续性研究[J].北京航空航天大学学报, 2016, 42(11):2378-2385. http://bhxb.buaa.edu.cn/CN/abstract/abstract13754.shtmlZHAO J, GUO F, A L S, et al. Evaluation of the sustainable feedstock for alternative aviation fuels[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11):2378-2385(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13754.shtml [2] 任海涛, 郭放, 杨晓奕.中国微藻航空煤油制备潜能及CO2减排[J].北京航空航天大学学报, 2016, 42(5):912-919. http://bhxb.buaa.edu.cn/CN/abstract/abstract13400.shtmlREN H T, GUO F, YANG X Y.Potential production of microalgae bio-jet fuel and CO2 emissions reduction in China[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):912-919(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13400.shtml [3] 贾春燕, 王洪铭.航空发动机燃烧室喷嘴内部燃油结焦研究[J].航空发动机, 2011, 37(5):41-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201105012JIA C Y, WANG H M.Investigate on fuel coke in nozzle of aeroengine combustor[J].Aeroengine, 2011, 37(5):41-44(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201105012 [4] 范启明, 米镇涛, 于燕.高超音速推进用吸热型烃类燃料的热稳定性研究Ⅰ.热氧化与热裂解沉积[J].燃料化学学报, 2002, 30(1):78-82. doi: 10.3969/j.issn.0253-2409.2002.01.017FAN Q M, MI Z T, YU Y.Study on thermal stability of endothermic hydrocarbon fuels for hypersonic propulsionⅠ.Thermal oxidation & pyrolytic deposit[J].Journal of Fuel Chemistry and Technology, 2002, 30(1):78-82(in Chinese). doi: 10.3969/j.issn.0253-2409.2002.01.017 [5] 张冬梅, 张怀安, 曹文杰, 等.喷气燃料热安定性对飞机发动机的影响[J].航空制造技术, 2008(13):91-93. doi: 10.3969/j.issn.1671-833X.2008.13.018ZHANG D M, ZHANG H A, CAO W J, et al.Effects of the heat stability of the jet fuels on the aeroengine[J].Aeronautical Manufacturing Technology, 2008(13):91-93(in Chinese). doi: 10.3969/j.issn.1671-833X.2008.13.018 [6] 范启明. 高超音速推进用吸热型烃类燃料的氧化与裂解过程研究[D]. 天津: 天津大学, 2002: 5-20. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y540334FAN Q M. Study on oxidation and cracking processes of endothermic hydrocarbon fuels for hypersonic propulsion[D]. Tianjing: Tianjing University, 2002: 5-20(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y540334 [7] PETLEY D.Thermal management for a mach 5 cruise aircraft using endothermic fuel-aircraft design, systems and operations conference (AIAA)[J].Journal of Aircraft, 1992, 29(3):384-389. doi: 10.2514/3.46173 [8] EDWARDS T. USAF supercritical hydrocarbon fuels interests[C]//Aerospace Sciences Meeting. Reston: AIAA, 2013. [9] 曲海杰. 高热安定性碳氢燃料的结构设计[D]. 天津: 天津大学, 2007: 5-20.QU H J. System design of high thermal-stable hydrocarbon fuel[D]Tianjing: Tianjing University, 2007: 5-20(in Chinese). [10] HARI T K, YAAKOB Z, BINITHA N N.Aviation biofuel from renewable resources:Routes, opportunities and challenges[J].Renewable & Sustainable Energy Reviews, 2015, 42:1234-1244. https://ukm.pure.elsevier.com/en/publications/aviation-biofuel-from-renewable-resources-routes-opportunities-an [11] BAROUTIAN S, AROUA M K, RAMAN A.Blended aviation biofuel from esterified Jatropha curcas, and waste vegetable oils[J].Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(6):911-916. doi: 10.1016/j.jtice.2013.02.007 [12] COMMODO M, FABRIS I, GROTH C P T, et al.Analysis of aviation fuel thermal oxidative stability by electrospray ionization mass spectrometry(ESI-MS)[J].Energy & Fuels, 2011, 25(5):2142-2150. [13] AMARA A B, KAOUBI S, STARCK L.Towards an optimal formulation of alternative jet fuels:Enhanced oxidation and thermal stability by the addition of cyclic molecules[J].Fuel, 2016, 173:98-105. doi: 10.1016/j.fuel.2016.01.040 [14] OLDANI A. Surrogate modeling of alternative jet fuels for study of autoignition characteristics[D]. Urbana: University of Illionois at Urbana-Champaign, 2014. https://www.ideals.illinois.edu/bitstream/handle/2142/49635/Anna_Oldani.pdf?sequence=1 [15] SALDANA D A, CRETON B, MOUGIN P, et al.Rational formulation of alternative fuels using QSPR methods:Application to jet fuels[J].Oil & Gas Science & Technology, 2013, 68(4):651-662. https://www.researchgate.net/profile/Nicolas_Jeuland/publication/266210559_Rational_Formulation_of_Alternative_Fuels_using_QSPR_Methods_Application_to_Jet_Fuels/links/562f6c8708aea5dba8d3546d.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail