留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种爬壁机器人动力学建模方法

徐亚茹 刘荣

徐亚茹, 刘荣. 一种爬壁机器人动力学建模方法[J]. 北京航空航天大学学报, 2018, 44(2): 280-285. doi: 10.13700/j.bh.1001-5965.2017.0097
引用本文: 徐亚茹, 刘荣. 一种爬壁机器人动力学建模方法[J]. 北京航空航天大学学报, 2018, 44(2): 280-285. doi: 10.13700/j.bh.1001-5965.2017.0097
XU Yaru, LIU Rong. An approach for dynamic modeling of climbing robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 280-285. doi: 10.13700/j.bh.1001-5965.2017.0097(in Chinese)
Citation: XU Yaru, LIU Rong. An approach for dynamic modeling of climbing robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 280-285. doi: 10.13700/j.bh.1001-5965.2017.0097(in Chinese)

一种爬壁机器人动力学建模方法

doi: 10.13700/j.bh.1001-5965.2017.0097
详细信息
    作者简介:

    徐亚茹  女, 博士研究生。主要研究方向:爬壁机器人动力学及控制

    刘荣  男, 博士, 教授, 博士生导师。主要研究方向:爬壁机器人、工业机器人

    通讯作者:

    刘荣, E-mail:rliu@buaa.edu.cn

  • 中图分类号: TH113

An approach for dynamic modeling of climbing robot

More Information
  • 摘要:

    基于Udwadia-Kalaba方程建立了双腔体吸附、轮式移动爬壁机器人的解析动力学模型。将系统的预定轨迹视为系统的约束关系,巧妙地将其融合到爬壁机器人动力学建模过程中;在不出现拉格朗日乘子的条件下,获得了满足约束所需附加力矩的解析表达式及系统的解析动力学方程;采用Baumgarte约束违约稳定法抑制了由于初始条件与约束方程不相容而导致的约束违约现象。爬壁机器人的广义坐标变量变化规律和运行轨迹的数值仿真结果证明了本文建模方法的可行性和有效性。

     

  • 图 1  爬壁机器人示意图

    Figure 1.  Schematic of climbing robot

    图 2  位移的数值解与理论解对比

    Figure 2.  Comparison of displacements between numerical values and theoretical values

    图 3  位移的数值解与理论解的误差

    Figure 3.  Displacement errors between numerical values and theoretical values

    图 4  运行轨迹的数值解与理论解对比

    Figure 4.  Comparison of trajectories between numerical values and theoretical values

    图 5  位移的修正数值解和理论解对比

    Figure 5.  Comparison of displacements between modified numerical values and theoretical values

    图 6  位移误差的数值解与修正数值解对比

    Figure 6.  Comparison of displacement errors between numerical values and modified numerical values

    图 7  运行轨迹的修正数值解与理论解对比

    Figure 7.  Comparison of trajectories between modified numerical values and theoretical values

    图 8  附加力矩示意图

    Figure 8.  Schematic of additional torques

    图 9  电机驱动力矩示意图

    Figure 9.  Schematic of driving torque generated by motors

  • [1] XU F, SHEN J, JIANG G P.Kinematic and dynamic analysis of a cable-climbing robot[J].International Journal of Advanced Robotic Systems, 2015, 12(7):1-17. doi: 10.5772/60865
    [2] PROVANCHER W R, JENSEN-SEGAL S I, FEHLBERG M A.ROCR:An energy-efficient dynamic wall-climbing robot[J].IEEE/ASME Transactions on Mechatronics, 2011, 16(5):897-906. doi: 10.1109/TMECH.2010.2053379
    [3] NAM S, OH J, LEE G, et al.Dynamic analysis during internal transition of a compliant multi-body climbing robot with magnetic adhesion[J].Journal of Mechanical Science and Technology, 2014, 28(12):5175-5187. doi: 10.1007/s12206-014-1141-z
    [4] BRAUN D J, GOLDFARB M.Eliminating constraint drift in the numerical simulation of constrained dynamical systems[J].Computer Methods in Applied Mechanics and Engineering, 2009, 198(37):3151-3160. http://www.sciencedirect.com/science/article/pii/S0045782509002011
    [5] PAN D, GAO F, MIAO Y.Dynamic research and analyses of a novel exoskeleton walking with humanoid gaits[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 228(9):1501-1511. doi: 10.1177/0954406213509611
    [6] KORAYEM M H, SHAFEI A M.A new approach for dynamic modeling of n-viscoelastic-link robotic manipulators mounted on a mobile base[J].Nonlinear Dynamics, 2015, 79(4):2767-2786. doi: 10.1007/s11071-014-1845-8
    [7] UDWADIA F E, KALABA R E.A new perspective on constrained motion[J].Proceedings:Mathematical and Physical Sciences, 1992, 439(1906):407-410. doi: 10.1098/rspa.1992.0158
    [8] CHO H, YU A.New approach to satellite formation-keeping:Exact solution to the full nonlinear problem[J].Journal of Aerospace Engineering, 2009, 22(4):445-455. doi: 10.1061/(ASCE)AS.1943-5525.0000013
    [9] LIU J, LIU R.Dynamic modeling of dual-arm cooperating manipulators based on Udwadia-Kalaba equation[J].Advances in Mechanical Engineering, 2016, 8(7):1-10. http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1732160&resultClick=1
    [10] HUANG J, CHEN Y H, ZHONG Z.Udwadia-Kalaba approach for parallel manipulator dynamics[J].Journal of Dynamic Systems, Measurement, and Control, 2013, 135(6):1012-1030. http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1732160
    [11] PENNESTRI E, VALENTINI P P, DE FALCO D.An application of the Udwadia-Kalaba dynamic formulation to flexible multibody systems[J].Journal of the Franklin Institute, 2010, 347(1):173-194. doi: 10.1016/j.jfranklin.2009.10.014
    [12] ZHAO H, ZHEN S, CHEN Y H.Dynamic modeling and simulation of multi-body systems using the Udwadia-Kalaba theory[J].Chinese Journal of Mechanical Engineering, 2013, 26(5):839-850. doi: 10.3901/CJME.2013.05.839
    [13] BAUMGARTE J.Stabilization of constraints and integrals of motion in dynamical systems[J].Computer Methods in Applied Mechanics and Engineering, 1972, 1(1):1-16. doi: 10.1016/0045-7825(72)90018-7
    [14] SCHUTTE A, UDWADIA F.New approach to the modeling of complex multibody dynamical systems[J].Journal of Applied Mechanics, 2011, 78(2):856-875. http://cat.inist.fr/?aModele=afficheN&cpsidt=23937551
    [15] UDWADIA F E, KALABA R E.What is the general form of the explicit equations of motion for constrained mechanical systems[J].Journal of Applied Mechanics, 2002, 69(3):335-339. doi: 10.1115/1.1459071
    [16] CHO H, UDWADIA F E.Explicit solution to the full nonlinear problem for satellite formation-keeping[J].Acta Astronautica, 2010, 67(3):369-387. http://www.sciencedirect.com/science/article/pii/S0094576510000615
  • 加载中
图(9)
计量
  • 文章访问数:  929
  • HTML全文浏览量:  125
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-27
  • 录用日期:  2017-04-24
  • 网络出版日期:  2018-02-20

目录

    /

    返回文章
    返回
    常见问答