Influence of aerodynamic parameters on short-period mode characteristics of closed-loop aircraft
-
摘要:
现代高性能战斗机均采用放宽静稳定性的布局构型,需通过先进飞行控制的设计来保证其闭环飞机在全飞行包线内均具有优良的动态特性。受到舵面操纵特性的限制,飞行控制系统(FCS)的能力是有限的,即飞机本体的气动参数需满足一定的要求才能保证闭环系统的飞行品质。本文建立了研究本体气动参数对闭环飞机短周期模态特性影响规律的方法,采用等效参数准则,以基于模型参考动态逆控制律的某放宽静稳定飞机为算例,计算分析了不同本体气动参数取值大小对闭环飞机短周期模态特性的影响规律。结果表明,升降舵操纵效能是影响闭环飞机短周期模态特性的主要因素,本体气动参数需满足一定的适配关系才能保证闭环飞机具有优良的短周期飞行品质。研究方法和结果对于放宽静稳定性飞机的本体设计与飞行控制系统设计等都具有很好的参考价值。
Abstract:Owing to the relaxed static stability technology applied to the modern high-performance fighter aircraft, the design of an advanced flight control system is required to confirm its closed-loop system for an excellent dynamic property within the flight envelope. The ability of flight control system (FCS) is limited as a result of the control effectiveness and deflection rate of the control surface. The designed aerodynamic parameters of aircraft must meet certain requirements to confirm good flying qualities in its closed-loop system. This paper presents a new method which describes the influence of various aerodynamic parameters on short-period mode characteristics of closed-loop aircraft. A relaxed static stability aircraft with model reference dynamic inversion control law is provided to investigate the influence rules of various aerodynamic parameters on short-period mode characteristics based on the equivalent parameter criterion. The results show that the elevator control effectiveness has a great influence on the short-period mode characteristics and the aerodynamic parameters need to match a certain match value set to keep excellent short-period mode flying qualities. The proposed method can provide reference for flight control system design with the optimized aerodynamic parameters for relaxed static stability aircraft.
-
表 1 飞机初始本体气动参数及变化范围
Table 1. Initial aircraft aerodynamic parameters and their variation range
气动参数 初始值 变化范围 Cmq -3.43 -15~-0.1 Cmα -0.12 -0.72~0.28 CLα 3.9 1.9~5.9 Cmδe -0.65 -0.11~-0.70 表 2 不同操纵导数时评定结果对比
Table 2. Comparison of assessment results with different control derivatives
Cmδe ωsp/(rad·s-1) ξsp 1/Tθ2 τe/s 品质 -0.13 2.8 0.53 0.38 0.200
3级3级 -0.32 2.9 0.46 0.40 0.107
2级2级 -0.65 3.3 0.41 0.46 0.059
1级1级 -0.70 3.3 0.41 0.46 0.059
1级1级 表 3 不同操纵导数和稳定导数时评定结果对比
Table 3. Comparison of assessment results with different control derivatives and different stability derivatives
Cmδe Cmα ωsp/
(rad·s-1)ξsp 1/Tθ2 τe/s 品质 -0.36 -0.72 2.8 0.45 0.53 0.087
1级1级 -0.12 2.7 0.41 0.56 0.091
1级1级 0.28 2.7 0.38 0.57 0.102
2级2级 -0.32 -0.72 2.7 0.48 0.53 0.096
1级1级 -0.12 2.7 0.40 0.57 0.107
2级2级 0.28 2.7 0.36 0.60 0.117
2级2级 -0.15 -0.72 2.7 0.42 0.56 0.184
2级2级 -0.12 2.8 0.38 0.59 0.192
2级2级 0.28 2.7 0.34 0.70 0.201
3级3级 表 4 不同操纵导数和阻尼导数的评定结果对比
Table 4. Comparison of assessment results with different control derivatives and different damping derivatives
Cmδe Cmq ωsp/
(rad·s-1)ξsp 1/Tθ2 τe/s 品质 -0.36 -15 2.7 0.39 0.56 0.074
1级1级 -3.43 2.7 0.41 0.56 0.091
1级1级 -0.1 2.8 0.42 0.56 0.100
2级2级 -0.32 -15 2.7 0.37 0.59 0.099
1级1级 -3.43 2.7 0.40 0.57 0.107
2级2级 -0.1 2.8 0.41 0.57 0.112
2级2级 -0.15 -15 2.7 0.36 0.59 0.181
2级2级 -3.43 2.8 0.38 0.59 0.192
2级2级 -0.1 2.8 0.38 0.57 0.201
3级3级 表 5 不同操纵导数和升力线斜率时评定结果对比
Table 5. Comparison of assessment results with different control derivatives and different lift curve slope
Cmδe CLα ωsp/
(rad·s-1)ξsp 1/Tθ2 τe/s 品质 -0.36 5.9 2.7 0.39 0.65 0.074
1级1级 3.9 2.7 0.41 0.56 0.091
1级1级 1.9 2.7 0.46 0.54 0.100
2级2级 -0.32 5.9 2.7 0.36 0.70 0.098
1级1级 3.9 2.7 0.40 0.57 0.107
2级2级 1.9 2.7 0.42 0.56 0.115
2级2级 -0.15 5.9 2.7 0.35 0.73 0.181
2级2级 3.9 2.8 0.38 0.59 0.192
2级2级 1.9 参数剧烈振荡,拟配效果差,品质低于3级 -
[1] TRAN T T, NEWMAN B.Nonlinear flight control design for longitudinal dynamics:AIAA-2015-1994[R].Reston:AIAA, 2015. [2] 方振平, 陈万春, 张曙光.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社, 2005:106.FANG Z P, CHEN W C, ZHANG S G.Aircraft flight dynamics[M].Beijing:Beihang University Press, 2005:106(in Chinese). [3] JANSEN Q J M.Relaxed static stability performance assessment on conventional and unconventional aircraft configurations[D].Delft:Delft University of Technology, 2015. [4] NELSON R C.Flight stability and automatic control[M].New York:WCB/McGraw Hill, 1988:72. [5] STEVENS B L, LEWIS F L, JOHNSON E N.Aircraft control and simulation:Dynamics, controls design, and autonomous systems[M].Hoboken:John Wiley & Sons, Inc., 2015:192-193. [6] 龙晋伟, 潘文俊, 王立新.战斗机动态逆控制律对比研究[J].飞行力学, 2013, 31(4):297-300. http://www.cnki.com.cn/Article/CJFDTotal-FHLX201501008.htmLONG J W, PAN W J, WANG L X.A comparison of nonlinear dynamics inversion control law designs for a fighter aircraft[J].Flight Dynamics, 2013, 31(4):297-300(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-FHLX201501008.htm [7] MITCHELL D G, DOMAN D B, KEY D L, et al.Evolution revolution and challenges of handling qualities[J].Journal of Guidance, Control, and Dynamics, 2004, 27(1):12-28. doi: 10.2514/1.3252 [8] GRATTON G.Initial airworthiness:An introduction to flying qualities evaluation[M].Berlin:Springer International Publishing, 2015:193-199. [9] GERTSEN W M, SHOMBER H A.Longitudinal handing qualities criteria-An evaluation[J].Journal of Aircraft, 1967, 4(4):371-374. doi: 10.2514/3.43851 [10] KREKELER G.High angel of attack flying qualities criteria[C]//Proceedings of 28th AIAA, Aerospace Sciences Meeting.Reston:AIAA, 1990:1-11. [11] YAN Y Y, DONG W H, ZOU Q, et al.Longitudinal inner loop flight controller flight control design by using L1 adaptive control theory[C]//IEEE International Conference on Information and Automation.Piscataway, NJ:IEEE Press, 2015:2965-2970. [12] MANNING C, GLEASON D.Flight test results using a low order equivalent systems technique to estimate flying qualities[C]//AIAA Atmospheric Flight Mechanics Conference.Reston:AIAA, 1992:231-243. [13] 杨宇, 陆宇平.基于飞行品质的飞机控制增稳系统参数估计[J].航空计算技术, 2011, 41(2):108-112. http://www.cqvip.com/QK/90843X/201102/37647320.htmlYANG Y, LU Y P.Parameter estimation for control augmentation system based on handling quality requirements[J].Aeronautical Computing Technique, 2011, 41(2):108-112(in Chinese). http://www.cqvip.com/QK/90843X/201102/37647320.html [14] 李淼, 王立新, 黄成涛.舵面特性对飞翼构型作战飞机短周期品质的影响[J].航空学报, 2009, 30(11):2059-2065. doi: 10.3321/j.issn:1000-6893.2009.11.008LI M, WANG L X, HUANG C T.Influence of control surface characteristics on short-period mode flying qualities for flying wing aircraft[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2059-2065(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.11.008 [15] U.S.Department of Defense.Military standard:Flying qualities of piloted air planes:MIL-STD-1797A[S].Washington, D.C.:U.S.Department of Defense, 1990. [16] SONNEVELDT L, CHU Q P, MULDER J A.Nonlinear flight control design using constrained adaptive back stepping[J].Journal of Guidance, Control, and Dynamics, 2007, 30(2):322-336. doi: 10.2514/1.25834 [17] LEWIS F L, STEVENS B L.Aircraft control and simulation[M].Hoboken:John Wiley & Sons, Inc., 1992:107-116. [18] SONNEVELDT L, VAN OORT E, CHU Q P, et al.Nonlinear adaptive flight control law design and handling qualities evaluation[C]//Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference.Piscataway, NJ:IEEE Press, 2009:7333-7338. [19] 柳晓菁, 易建强, 赵冬斌.基于Lyapunov稳定理论设计MRAC系统的简单方法[J].系统仿真学报, 2005, 17(8):1933-1935. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200508039.htmLIU X J, YI J Q, ZHAO D B.Simple scheme for MRAC system using Lyapunov theory[J].Journal of System Simulation, 2005, 17(8):1933-1935(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200508039.htm [20] MILLER C J.Nonlinear dynamic inversion baseline control law:Flight-test results for the full-scale advanced system tested F/A-18 airplane:AIAA-2011-6468[R].Reston:AIAA, 2011.