留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气动参数对闭环飞机短周期模态特性的影响

徐王强 王立新

徐王强, 王立新. 气动参数对闭环飞机短周期模态特性的影响[J]. 北京航空航天大学学报, 2018, 44(2): 333-341. doi: 10.13700/j.bh.1001-5965.2017.0109
引用本文: 徐王强, 王立新. 气动参数对闭环飞机短周期模态特性的影响[J]. 北京航空航天大学学报, 2018, 44(2): 333-341. doi: 10.13700/j.bh.1001-5965.2017.0109
XU Wangqiang, WANG Lixin. Influence of aerodynamic parameters on short-period mode characteristics of closed-loop aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 333-341. doi: 10.13700/j.bh.1001-5965.2017.0109(in Chinese)
Citation: XU Wangqiang, WANG Lixin. Influence of aerodynamic parameters on short-period mode characteristics of closed-loop aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 333-341. doi: 10.13700/j.bh.1001-5965.2017.0109(in Chinese)

气动参数对闭环飞机短周期模态特性的影响

doi: 10.13700/j.bh.1001-5965.2017.0109
详细信息
    作者简介:

    徐王强  男, 博士研究生。主要研究方向:飞机设计、飞行安全

    王立新  男, 教授, 博士生导师。主要研究方向:飞机设计、飞行动力学与控制、飞行安全

    通讯作者:

    王立新, E-mail:wlx_c818@163.com

  • 中图分类号: V212.1

Influence of aerodynamic parameters on short-period mode characteristics of closed-loop aircraft

More Information
  • 摘要:

    现代高性能战斗机均采用放宽静稳定性的布局构型,需通过先进飞行控制的设计来保证其闭环飞机在全飞行包线内均具有优良的动态特性。受到舵面操纵特性的限制,飞行控制系统(FCS)的能力是有限的,即飞机本体的气动参数需满足一定的要求才能保证闭环系统的飞行品质。本文建立了研究本体气动参数对闭环飞机短周期模态特性影响规律的方法,采用等效参数准则,以基于模型参考动态逆控制律的某放宽静稳定飞机为算例,计算分析了不同本体气动参数取值大小对闭环飞机短周期模态特性的影响规律。结果表明,升降舵操纵效能是影响闭环飞机短周期模态特性的主要因素,本体气动参数需满足一定的适配关系才能保证闭环飞机具有优良的短周期飞行品质。研究方法和结果对于放宽静稳定性飞机的本体设计与飞行控制系统设计等都具有很好的参考价值。

     

  • 图 1  本体气动参数对闭环飞机短周期模态特性影响规律研究流程

    Figure 1.  Process for analyzing influence rules of aerodynamic parameters on short-period mode characteristics of closed-loop aircraft

    图 2  模型参考动态逆结构

    Figure 2.  Model reference dynamic inversion structure

    图 3  升降舵操纵效能与稳定导数的飞行品质边界

    Figure 3.  Flying qualities boundary elevator control efficiency and stability derivatives

    图 4  升降舵操纵效能与阻尼导数的飞行品质边界

    Figure 4.  Flying qualities boundary of elevator control efficiency and damping derivatives

    图 5  升降舵操纵效能与升力线斜率的飞行品质边界

    Figure 5.  Flying qualities boundary of elevator control efficiency and lift curve slope

    图 6  满足1级品质的气动参数适配值集合

    Figure 6.  Match value set of aerodynamic parameters to satisfy level 1 flying qualities

    图 7  阻尼导数与稳定导数的适配区域

    Figure 7.  Match value area of damping derivatives and stability derivatives

    图 8  不同升降舵操纵效能下的气动参数适配值集合

    Figure 8.  Match value set of aerodynamic parameters with different elevator control efficiency

    表  1  飞机初始本体气动参数及变化范围

    Table  1.   Initial aircraft aerodynamic parameters and their variation range

    气动参数 初始值 变化范围
    Cmq -3.43 -15~-0.1
    C -0.12 -0.72~0.28
    C 3.9 1.9~5.9
    Ce -0.65 -0.11~-0.70
    下载: 导出CSV

    表  2  不同操纵导数时评定结果对比

    Table  2.   Comparison of assessment results with different control derivatives

    Ce ωsp/(rad·s-1) ξsp 1/Tθ2 τe/s 品质
    -0.13 2.8 0.53 0.38 0.200
    3级
    3级
    -0.32 2.9 0.46 0.40 0.107
    2级
    2级
    -0.65 3.3 0.41 0.46 0.059
    1级
    1级
    -0.70 3.3 0.41 0.46 0.059
    1级
    1级
    下载: 导出CSV

    表  3  不同操纵导数和稳定导数时评定结果对比

    Table  3.   Comparison of assessment results with different control derivatives and different stability derivatives

    Ce C ωsp/
    (rad·s-1)
    ξsp 1/Tθ2 τe/s 品质
    -0.36 -0.72 2.8 0.45 0.53 0.087
    1级
    1级
    -0.12 2.7 0.41 0.56 0.091
    1级
    1级
    0.28 2.7 0.38 0.57 0.102
    2级
    2级
    -0.32 -0.72 2.7 0.48 0.53 0.096
    1级
    1级
    -0.12 2.7 0.40 0.57 0.107
    2级
    2级
    0.28 2.7 0.36 0.60 0.117
    2级
    2级
    -0.15 -0.72 2.7 0.42 0.56 0.184
    2级
    2级
    -0.12 2.8 0.38 0.59 0.192
    2级
    2级
    0.28 2.7 0.34 0.70 0.201
    3级
    3级
    下载: 导出CSV

    表  4  不同操纵导数和阻尼导数的评定结果对比

    Table  4.   Comparison of assessment results with different control derivatives and different damping derivatives

    Ce Cmq ωsp/
    (rad·s-1)
    ξsp 1/Tθ2 τe/s 品质
    -0.36 -15 2.7 0.39 0.56 0.074
    1级
    1级
    -3.43 2.7 0.41 0.56 0.091
    1级
    1级
    -0.1 2.8 0.42 0.56 0.100
    2级
    2级
    -0.32 -15 2.7 0.37 0.59 0.099
    1级
    1级
    -3.43 2.7 0.40 0.57 0.107
    2级
    2级
    -0.1 2.8 0.41 0.57 0.112
    2级
    2级
    -0.15 -15 2.7 0.36 0.59 0.181
    2级
    2级
    -3.43 2.8 0.38 0.59 0.192
    2级
    2级
    -0.1 2.8 0.38 0.57 0.201
    3级
    3级
    下载: 导出CSV

    表  5  不同操纵导数和升力线斜率时评定结果对比

    Table  5.   Comparison of assessment results with different control derivatives and different lift curve slope

    Ce C ωsp/
    (rad·s-1)
    ξsp 1/Tθ2 τe/s 品质
    -0.36 5.9 2.7 0.39 0.65 0.074
    1级
    1级
    3.9 2.7 0.41 0.56 0.091
    1级
    1级
    1.9 2.7 0.46 0.54 0.100
    2级
    2级
    -0.32 5.9 2.7 0.36 0.70 0.098
    1级
    1级
    3.9 2.7 0.40 0.57 0.107
    2级
    2级
    1.9 2.7 0.42 0.56 0.115
    2级
    2级
    -0.15 5.9 2.7 0.35 0.73 0.181
    2级
    2级
    3.9 2.8 0.38 0.59 0.192
    2级
    2级
    1.9 参数剧烈振荡,拟配效果差,品质低于3级
    下载: 导出CSV
  • [1] TRAN T T, NEWMAN B.Nonlinear flight control design for longitudinal dynamics:AIAA-2015-1994[R].Reston:AIAA, 2015.
    [2] 方振平, 陈万春, 张曙光.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社, 2005:106.

    FANG Z P, CHEN W C, ZHANG S G.Aircraft flight dynamics[M].Beijing:Beihang University Press, 2005:106(in Chinese).
    [3] JANSEN Q J M.Relaxed static stability performance assessment on conventional and unconventional aircraft configurations[D].Delft:Delft University of Technology, 2015.
    [4] NELSON R C.Flight stability and automatic control[M].New York:WCB/McGraw Hill, 1988:72.
    [5] STEVENS B L, LEWIS F L, JOHNSON E N.Aircraft control and simulation:Dynamics, controls design, and autonomous systems[M].Hoboken:John Wiley & Sons, Inc., 2015:192-193.
    [6] 龙晋伟, 潘文俊, 王立新.战斗机动态逆控制律对比研究[J].飞行力学, 2013, 31(4):297-300. http://www.cnki.com.cn/Article/CJFDTotal-FHLX201501008.htm

    LONG J W, PAN W J, WANG L X.A comparison of nonlinear dynamics inversion control law designs for a fighter aircraft[J].Flight Dynamics, 2013, 31(4):297-300(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-FHLX201501008.htm
    [7] MITCHELL D G, DOMAN D B, KEY D L, et al.Evolution revolution and challenges of handling qualities[J].Journal of Guidance, Control, and Dynamics, 2004, 27(1):12-28. doi: 10.2514/1.3252
    [8] GRATTON G.Initial airworthiness:An introduction to flying qualities evaluation[M].Berlin:Springer International Publishing, 2015:193-199.
    [9] GERTSEN W M, SHOMBER H A.Longitudinal handing qualities criteria-An evaluation[J].Journal of Aircraft, 1967, 4(4):371-374. doi: 10.2514/3.43851
    [10] KREKELER G.High angel of attack flying qualities criteria[C]//Proceedings of 28th AIAA, Aerospace Sciences Meeting.Reston:AIAA, 1990:1-11.
    [11] YAN Y Y, DONG W H, ZOU Q, et al.Longitudinal inner loop flight controller flight control design by using L1 adaptive control theory[C]//IEEE International Conference on Information and Automation.Piscataway, NJ:IEEE Press, 2015:2965-2970.
    [12] MANNING C, GLEASON D.Flight test results using a low order equivalent systems technique to estimate flying qualities[C]//AIAA Atmospheric Flight Mechanics Conference.Reston:AIAA, 1992:231-243.
    [13] 杨宇, 陆宇平.基于飞行品质的飞机控制增稳系统参数估计[J].航空计算技术, 2011, 41(2):108-112. http://www.cqvip.com/QK/90843X/201102/37647320.html

    YANG Y, LU Y P.Parameter estimation for control augmentation system based on handling quality requirements[J].Aeronautical Computing Technique, 2011, 41(2):108-112(in Chinese). http://www.cqvip.com/QK/90843X/201102/37647320.html
    [14] 李淼, 王立新, 黄成涛.舵面特性对飞翼构型作战飞机短周期品质的影响[J].航空学报, 2009, 30(11):2059-2065. doi: 10.3321/j.issn:1000-6893.2009.11.008

    LI M, WANG L X, HUANG C T.Influence of control surface characteristics on short-period mode flying qualities for flying wing aircraft[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2059-2065(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.11.008
    [15] U.S.Department of Defense.Military standard:Flying qualities of piloted air planes:MIL-STD-1797A[S].Washington, D.C.:U.S.Department of Defense, 1990.
    [16] SONNEVELDT L, CHU Q P, MULDER J A.Nonlinear flight control design using constrained adaptive back stepping[J].Journal of Guidance, Control, and Dynamics, 2007, 30(2):322-336. doi: 10.2514/1.25834
    [17] LEWIS F L, STEVENS B L.Aircraft control and simulation[M].Hoboken:John Wiley & Sons, Inc., 1992:107-116.
    [18] SONNEVELDT L, VAN OORT E, CHU Q P, et al.Nonlinear adaptive flight control law design and handling qualities evaluation[C]//Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference.Piscataway, NJ:IEEE Press, 2009:7333-7338.
    [19] 柳晓菁, 易建强, 赵冬斌.基于Lyapunov稳定理论设计MRAC系统的简单方法[J].系统仿真学报, 2005, 17(8):1933-1935. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200508039.htm

    LIU X J, YI J Q, ZHAO D B.Simple scheme for MRAC system using Lyapunov theory[J].Journal of System Simulation, 2005, 17(8):1933-1935(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200508039.htm
    [20] MILLER C J.Nonlinear dynamic inversion baseline control law:Flight-test results for the full-scale advanced system tested F/A-18 airplane:AIAA-2011-6468[R].Reston:AIAA, 2011.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  11
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-02
  • 录用日期:  2017-06-02
  • 刊出日期:  2018-02-20

目录

    /

    返回文章
    返回
    常见问答