-
摘要:
为从受谐波和随机噪声干扰的振动信号中提取出故障冲击成分,融合四大基本形态学算子提出了改进形态滤波方法——平均组合差值形态滤波(ACDIF)方法,同时与固有时间尺度分解(ITD)相结合,并将ITD-ACDIF方法应用到滚动轴承的故障诊断中。首先,对轴承振动信号进行ITD分解得到一系列旋转分量(PRC);然后,以峭度为准则筛选出含故障信息丰富的有效PRC,对每个有效分量进行ACDIF滤波提取冲击成分进行信号重构;最后,利用频谱分析提取重构信号中的故障特征。数值仿真和轴承故障振动信号的试验结果表明,本文方法可有效滤除谐波干扰,提取强背景噪声下的冲击故障特征,实现设备的故障诊断。
-
关键词:
- 轴承故障 /
- 固有时间尺度分解(ITD) /
- 旋转分量(PRC) /
- 改进形态滤波 /
- 故障诊断
Abstract:For extracting fault impulse components embedded in the vibration signal with much noise and harmonics, an improved morphological filter algorithm called average combination difference morphological filter (ACDIF) is proposed on the basis of the four basic morphological operators. Then ACDIF is combined with the intrinsic time scale decomposition (ITD) and the ITD-ACDIF method is employed in the fault diagnosis for rolling bearing. In the ITD-ACDIF fault diagnosis method, ITD is applied to the original vibration signal and a series of proper rotation components (PRC) are obtained, and then the kurtosis is regarded as criterion to select effective PR components which contain much fault-related information. After that, ACDIF filtering is performed on each effective PR in order to pick up bidirectional impulses, and filtered PRs are combined into a signal. Finally, the fault feature is extracted from reconstructed signal by amplitude spectrum. The experimental results on simulated signal and actual bearing vibration signal demonstrate that the proposed method can effectively suppress noise interference and extracting the characteristics of impact fault under the strong background noise to realize fault diagnosis of equipment.
-
表 1 轴承结构参数
Table 1. Structure parameters of bearing
参数 数值 负载/kN 12.74 节径/mm 65.5 钢球直径/mm 15.08 钢球数 8 接触角/(°) 0 表 2 轴承外圈故障数据
Table 2. Fault data of bearing outer race
参数 数值 采样频率/kHz 20.0 采样点数 2 048 发动机转速/(r·min-1) 4 000 转轴基频/Hz 66.67 故障频率/Hz 205.29 表 3 各PRC及R的峭度值
Table 3. Kurtosis values of PRC and R
分量 峭度 PRC1 3.52 PRC2 3.46 PRC3 4.83 PRC4 2.83 R 2.44 表 4 各IMF分量及R的峭度值
Table 4. Kurtosis values of IMF components and R
分量 峭度 IMF1 4.36 IMF2 3.43 IMF3 2.98 IMF4 2.85 R 2.57 -
[1] YU J.Local and nonlocal preserving projection for bearing defect classification and performance assessment[J].IEEE Transactions on Industrial Electronics, 2012, 59(5):2363-2376. doi: 10.1109/TIE.2011.2167893 [2] 李舜酩, 郭海东, 李殿荣.振动信号处理方法综述[J].仪器仪表学报, 2013, 34(8):1907-1915. http://d.wanfangdata.com.cn/Periodical_yqyb201308031.aspxLI S M, GUO H D, LI D R.Review of vibration signal processing methods[J].Chinese Journal of Scientific Instrument, 2013, 34(8):1907-1915(in Chinese). http://d.wanfangdata.com.cn/Periodical_yqyb201308031.aspx [3] FREI M G, OSORIO I.Intrinsic time-scale decomposition:Time-frequency-energy analysis and real-time filtering of non-stationary signals[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 463(2078):321-342. doi: 10.1098/rspa.2006.1761 [4] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995. doi: 10.1098/rspa.1998.0193 [5] 张琳, 黄敏.基于EMD和切片双谱的轴承故障诊断方法[J].北京航空航天大学学报, 2010, 36(3):287-290. http://bhxb.buaa.edu.cn/CN/abstract/abstract8498.shtmlZHANG L, HUANG M.Fault diagnosis approach for bearing based on EMD and slice bi-spectrum[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(3):287-290(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8498.shtml [6] 程军圣, 李海龙, 杨宇.改进ITD和能量矩在齿轮故障诊断中的应用[J].振动、测试与诊断, 2013, 33(6):954-959. doi: 10.3969/j.issn.1004-6801.2013.06.006CHENG J S, LI H L, YANG Y.Based on the improved ITD and energy moment to diagnose the gear[J].Journal of Vibration, Measurement & Diagnosis, 2013, 33(6):954-959(in Chinese). doi: 10.3969/j.issn.1004-6801.2013.06.006 [7] FENG Z, LIN X, ZUO M.Joint amplitude and frequency demodulation analysis based on intrinsic time-scale decomposition for planetary gearbox fault diagnosis[J].Mechanical Systems and Signal Processing, 2016, 72-73:223-240. doi: 10.1016/j.ymssp.2015.11.024 [8] HU A, YAN X, XIANG L.A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension[J].Renewable Energy, 2015, 83:767-778. doi: 10.1016/j.renene.2015.04.063 [9] MARAGOS P, SCHAFER R W.Morphological filters-Part Ⅰ:Their set-theoretic analysis and relations to linear shift-invariant filters[J].IEEE Transactions on Acoustics, Speech, and Signal Proceeding, 1987, 35(8):1153-1169. doi: 10.1109/TASSP.1987.1165259 [10] 李兵, 张培林, 刘东升, 等.基于形态梯度解调算子的齿轮故障特征提取[J].振动、测试与诊断, 2010, 30(1):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdcsyzd201001009LI B, ZHANG P L, LIU D S, et al.Feature extraction for gear fault diagnosis using morphological gradient demodulation[J].Journal of Vibration, Measurement & Diagnosis, 2010, 30(1):39-42(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdcsyzd201001009 [11] HU Z, WANG C, ZHU J, et al.Bearing fault diagnosis based on an improved morphological filter[J].Measurement, 2016, 80:163-178. doi: 10.1016/j.measurement.2015.11.028 [12] 张平, 张小栋, 董晓妮, 等.自调整复合级联形态滤波算法及应用[J].振动、测试与诊断, 2015, 35(3):459-463. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zdcsyzd201503009ZHANG P, ZHANG X D, DONG X N, et al.Self-adjusting composite cascade morphology filter algorithm and its application[J].Journal of Vibration, Measurement & Diagnosis, 2015, 35(3):459-463(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zdcsyzd201503009 [13] HARALICK R M, STERNBERG S R, ZHUANG X.Image analysis using mathematical morphology[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(4):532-550. https://dl.acm.org/citation.cfm?id=28802 [14] 章立军, 杨德斌, 徐金梧, 等.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报, 2007, 43(2):71-75. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jxgcxb200702011ZHANG L J, YANG D B, XU J W, et al.Approach to extracting gear fault feature based on mathematical morphological filtering[J].Journal of Mechanical Engineering, 2007, 43(2):71-75(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jxgcxb200702011 [15] RAJ A S, MURALI N.Early classification of bearing faults using morphological operators and fuzzy inference[J].IEEE Transactions on Industrial Electronics, 2013, 60(2):567-574. doi: 10.1109/TIE.2012.2188259 [16] FELDMAN M.Hilbert transform in vibration analysis[J].Mechanical Systems and Signal Processing, 2011, 25(3):735-802. doi: 10.1016/j.ymssp.2010.07.018