-
摘要:
针对在信号特征提取与识别中使用双谱估计数据量大、维度高的问题,提出了双谱对角切片(BDS)与广义维数(GD)相结合的识别方法。通过提取信号双谱对角切片减少数据量,并利用多重分形理论中的广义维数降低数据维度,对切片内部特性进行细微描述,基于距离测度提出特征评价指标,从而选出最具有区分度的3个阶数对应的广义维数作为特征向量,输入到最小二乘支持向量机中进行分类识别。使用4种低截获概率(LPI)雷达信号作为待识别信号,仿真结果表明,本文方法提取的信号特征在特征空间中有良好的聚集性和离散性,在0 dB信噪比下,识别准确率能达到92.2%,与选取的其他方法对比说明其具有很好的识别性能。
-
关键词:
- 低截获概率(LPI) /
- 双谱对角切片(BDS) /
- 多重分形 /
- 广义维数(GD) /
- 特征提取
Abstract:Regarding the deficiencies of bispectrum with big data and high dimension in signal feature extraction and recognition, a method combining bispectra diagonal slice (BDS) with generalized dimension (GD) was proposed. First, BDS was used to reduce data volume and GD in the multi-fractal theory was taken to reduce dimension in order to make subtle description for slice. Second, generalized dimension corresponding to three ranks is treated as feature vectors by feature evaluation index based on distance measure. Finally, the feature vectors will be input into least squares support vector machine for recognition. Four sorts of low probability of intercept (LPI) signal are used to be recognized, and the simulation results show that the signal features in feature space have good aggregation and discreteness, and the accuracy rate of recognition can reach 92.2% when the SNR is 0 dB, which shows that it has good performance in recognition compared with other algorithms.
-
表 1 不同方法识别准确率对比
Table 1. Accuracy rate of recognition among different methods
-
[1] 王文哲, 吴华, 王经商, 等.基于CEEMDAN的雷达信号脉内细微特征提取法[J].北京航空航天大学学报, 2016, 42(11):2532-2539. http://bhxb.buaa.edu.cn/CN/abstract/abstract14054.shtmlWANG W Z, WU H, WANG J S, et al.Subtle intrapulse feature extraction based on CEEMDAN for radar signal[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11):2532-2539(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14054.shtml [2] LIU Y J, XIAO P, WU H C, et al.LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J].Journal of Systems Engineering and Electronics, 2015, 26(5):973-981. doi: 10.1109/JSEE.2015.00106 [3] 王星, 周一鹏, 周东青, 等.基于深度置信网络和双谱对角切片的低截获概率雷达信号识别[J].电子与信息学报, 2016, 38(11):2972-2976. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzyx201611038&dbname=CJFD&dbcode=CJFQWANG X, ZHOU Y P, ZHOU D Q, et al.Research on low probability of intercept radar signal recognition using deep belief network and bispectra diagonal slice[J].Journal of Electronic & Information Technology, 2016, 38(11):2972-2976(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzyx201611038&dbname=CJFD&dbcode=CJFQ [4] 陈涛, 姚文杨, 瞿孝霏, 等.雷达辐射源信号双谱估计的物理意义及其辐射源个体识别[J].中南大学学报(自然科学版), 2013, 44(1):179-187. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zngd201301025&dbname=CJFD&dbcode=CJFQCHEN T, YAO W Y, ZHAI X F, et al.Bispectrum physical meaning and emitter individual recognition of radar emitter signal[J].Journal of Central South University (Science and Technology), 2013, 44(1):179-187(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zngd201301025&dbname=CJFD&dbcode=CJFQ [5] YOU M L, JIANG T.New method for target identification in a foliage environment using selected bispectra and particle swarm optimistion-based support vector machine[J].IET Signal Processing, 2014, 8(1):76-84. doi: 10.1049/iet-spr.2012.0389 [6] 陈韬伟, 金炜东, 李杰.基于围线积分双谱的雷达辐射源信号个体特征提取[J].计算机工程与应用, 2013, 49(8):209-212. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsgg201308051&dbname=CJFD&dbcode=CJFQCHEN T W, JIN W D, LI J.Individual feature extraction from radar emitter signals based on surrounding-line integral bispectrum[J].Computer Engineering and Applications, 2013, 49(8):209-212(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsgg201308051&dbname=CJFD&dbcode=CJFQ [7] 张彦龙, 张登福, 王世强, 等.一种雷达辐射源双谱二次特征提取方法[J].现代雷达, 2013, 35(3):28-33. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xdld201303006&dbname=CJFD&dbcode=CJFQZHANG Y L, ZHANG D F, WANG S Q, et al.A new scheme for bispectrum cascade feature extraction of intra-pulse modulated radar signals[J].Modern Radar, 2013, 35(3):28-33(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xdld201303006&dbname=CJFD&dbcode=CJFQ [8] 王世强, 张登福, 毕笃彦, 等.双谱二次特征在雷达信号识别中的应用[J].西安电子科技大学学报(自然科学版), 2012, 39(2):127-132. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xdkd201202022&dbname=CJFD&dbcode=CJFQWANG S Q, ZHANG D F, BI D Y, et al.Research on recognizing the radar signal using the bispectrum cascade feature[J].Journal of Xidian University (Natural Science), 2012, 39(2):127-132(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xdkd201202022&dbname=CJFD&dbcode=CJFQ [9] 丁凯, 方向, 张卫平, 等.基于声信号多重分形和支持向量机的目标识别研究[J].兵工学报, 2012, 33(12):1521-1526. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bigo201212020&dbname=CJFD&dbcode=CJFQDING K, FANG X, ZHANG W P, et al.Target identification of acoustic signals based on multifractal analysis and support vector machine[J].Acta Armamentarii, 2012, 33(12):1521-1526(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bigo201212020&dbname=CJFD&dbcode=CJFQ [10] HARTMANN A, MUKLI P, NAGY Z, et al.Real-time fractal signal processing in the time domain[J].Physica A:Statistical Mechanics and Its Applications, 2013, 392(1):89-102. doi: 10.1016/j.physa.2012.08.002 [11] 陈红, 蔡晓霞, 徐云, 等.基于多重分形特征的通信调制方式识别研究[J].电子与信息学报, 2016, 33(4):863-869. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzyx201604013&dbname=CJFD&dbcode=CJFQCHEN H, CAI X X, XU Y, et al.Communication modulation recognition based on multi-fractal dimension characteristics[J].Journal of Electronic & Information Technology, 2016, 33(4):863-869(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzyx201604013&dbname=CJFD&dbcode=CJFQ [12] CHAKRABORTY B, HARIS K, LATHA G, et al.Multifractal approach for seafloor characterization[J].IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):54-58. doi: 10.1109/LGRS.2013.2245856 [13] 黄家圣. 调频信号指纹特征研究[D]. 北京: 北京邮电大学, 2011: 12-13. http://cdmd.cnki.com.cn/Article/CDMD-10013-1011120377.htmHUANG J S. Study on fingerprint features of frequency hopping spread spectrum signals[D]. Beijing: Beijing University of Posts and Telecommunications, 2011: 12-13(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10013-1011120377.htm [14] 何永亮, 陈西豪, 许华, 等.利用信号围线积分双谱分形特征实现电台识别[J].电讯技术, 2014, 54(10):1354-1359. doi: 10.3969/j.issn.1001-893x.2014.10.008HE Y L, CHEN X H, XU H, et al.Individual transmitter identification based on fractal feature of surrounding-line integral bispectrum[J].Telecommunication Engineering, 2014, 54(10):1354-1359(in Chinese). doi: 10.3969/j.issn.1001-893x.2014.10.008 [15] 梁华东, 韩江洪.采用双谱多类小波包特征的雷达信号聚类分选[J].光子学报, 2014, 43(3):152-159. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gzxb201403029&dbname=CJFD&dbcode=CJFQLIANG H D, HAN J H.Clustering and sorting radar signal based on multi-wavelet packets characteristics of bispectrum[J].Acta Photonica Sinica, 2014, 43(3):152-159(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gzxb201403029&dbname=CJFD&dbcode=CJFQ [16] 肖乐群, 张玉灵, 赵拥军.基于对角积分双谱的雷达辐射源信号识别[J].信息工程大学学报, 2012, 13(1):95-99. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xxgc201201020&dbname=CJFD&dbcode=CJFQXIA L Q, ZHANG Y L, ZHAO Y J.Radar emitter signal recognition based on diagonally integral bispectrum[J].Journal of Information Engineering University, 2012, 13(1):95-99(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xxgc201201020&dbname=CJFD&dbcode=CJFQ [17] 邓延丽, 金炜东, 李家会, 等.基于聚集离散性与可分性的雷达信号特征评价[J].计算机应用, 2013, 33(7):1946-1949. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjy201307041&dbname=CJFD&dbcode=CJFQDENG Y L, JIN W D, LI J H, et al.Feature evaluation of radar signal based on aggregation, discreteness and divisibility[J].Journal of Computer Application, 2013, 33(7):1946-1949(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjy201307041&dbname=CJFD&dbcode=CJFQ