留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大前置角拦截攻击时间控制导引律

王斌 雷虎民 李炯 叶继坤 李宁波

王斌, 雷虎民, 李炯, 等 . 大前置角拦截攻击时间控制导引律[J]. 北京航空航天大学学报, 2018, 44(3): 605-613. doi: 10.13700/j.bh.1001-5965.2017.0162
引用本文: 王斌, 雷虎民, 李炯, 等 . 大前置角拦截攻击时间控制导引律[J]. 北京航空航天大学学报, 2018, 44(3): 605-613. doi: 10.13700/j.bh.1001-5965.2017.0162
WANG Bin, LEI Humin, LI Jiong, et al. Impact time control guidance law for large heading errors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 605-613. doi: 10.13700/j.bh.1001-5965.2017.0162(in Chinese)
Citation: WANG Bin, LEI Humin, LI Jiong, et al. Impact time control guidance law for large heading errors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 605-613. doi: 10.13700/j.bh.1001-5965.2017.0162(in Chinese)

大前置角拦截攻击时间控制导引律

doi: 10.13700/j.bh.1001-5965.2017.0162
基金项目: 

国家自然科学基金 61573374

国家自然科学基金 61503408

航空科学基金 20150196006

详细信息
    作者简介:

    王斌 男, 硕士研究生。主要研究方向:飞行器制导与控制

    雷虎民 男, 博士, 教授, 博士生导师。主要研究方向:飞行器制导与控制

    通讯作者:

    雷虎民. E-mail: lhm7600@sina.cn

  • 中图分类号: V448.13;TJ765.3

Impact time control guidance law for large heading errors

Funds: 

National Natural Science Foundation of China 61573374

National Natural Science Foundation of China 61503408

Aeronautical Science Foundation of China 20150196006

More Information
  • 摘要:

    为了实现大前置角拦截下的时间一致性饱和攻击,利用非线性导引方程,采取基于预测命中点(PIP)的剩余时间估计方法,结合等效滑模控制理论和Lyapunov稳定性定理,设计了一种大前置角拦截攻击时间控制导引律(ITCG)。针对固定目标和非机动运动目标,在弹目接近速度为负的情况下也能保证准确命中,实现了任意初始前置角下的指定时间到达,拓宽了导弹的制导初始条件,并给出了严格的理论证明。不同初始条件下的仿真结果验证了导引律的有效性。

     

  • 图 1  弹目相对运动模型

    Figure 1.  Missile-target relative motion model

    图 2  固定目标拦截时不同攻击时间仿真

    Figure 2.  Simulation of different impact time for intercepting stationary target

    图 3  固定目标拦截时不同前置角仿真

    Figure 3.  Simulation of different heading errors for intercepting stationary target

    图 4  运动目标拦截时不同攻击时间仿真

    Figure 4.  Simulation of different impact time for intercepting moving target

    图 5  运动目标拦截时不同前置角仿真

    Figure 5.  Simulation of different heading errors for intercepting moving target

    图 6  相同位置齐射攻击仿真

    Figure 6.  Simulation of same position for salvo attack

    图 7  不同位置齐射攻击仿真

    Figure 7.  Simulation of different position for salvo attack

    表  1  仿真参数值

    Table  1.   Value of simulation parameters

    初始参数 数值
    导弹初始位置/m (0,0)
    目标初始位置/m (10 000,0)
    导弹弹道倾角θM0/(°) 60
    目标弹道倾角θT0/(°) 180
    导弹速度VM/(m·s-1) 300
    目标速度VT/(m·s-1) 0、120
    导弹最大法向加速度aMmax/(m·s-2) 250
    下载: 导出CSV
  • [1] KIM B S, LEE J G, HAN H S.Biased PNG law for impact with angular constraint[J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):277-288. doi: 10.1109/7.640285
    [2] 张友安, 马国欣.攻击时间控制的动态逆三维制导律[J].哈尔滨工程大学学报, 2010, 31(2):215-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201002014

    ZHANG Y A, MA G X.Dynamic inversion three-dimensional guidance law for impact time control[J].Journal of Harbin Engineering University, 2010, 31(2):215-219(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201002014
    [3] 张友安, 张友根.多导弹攻击时间与攻击角度两阶段制导[J].吉林大学学报(工学版), 2010, 40(5):1442-1447. http://or.nsfc.gov.cn/bitstream/00001903-5/101415/1/1000000735946.pdf

    ZHANG Y A, ZHANG Y G.Two stages guidance to control impact time and impact angle for multi-missiles[J].Journal of Jilin University(Engineering and Technology Editiion), 2010, 40(5):1442-1447(in Chinese). http://or.nsfc.gov.cn/bitstream/00001903-5/101415/1/1000000735946.pdf
    [4] HARL N, BALAKRISHNAN S.Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6):1436-1449. doi: 10.1109/TCST.2011.2169795
    [5] LEE J I, JEON I S, TAHK M J.Guidance law to control impact time and angle[J].IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1):301-310. doi: 10.1109/TAES.2007.357135
    [6] ARITA S, UENO S. Optimal feedback guidance for nonlinear missile model with impact time and angle constraints[C]//AIAA Guidance, Navigation, and Control(GNC)Conference. Reston: AIAA, 2013: 1-12.
    [7] ZHANG L M, SUN M W, CHEN Z Q, et al.Receding horizon trajectory optimization with terminal impact specifications[J].Mathematical Problems in Engineering, 2014, 28(6):1-8. https://www.hindawi.com/journals/mpe/2014/604705/tab2/
    [8] YAN F, KEMAO M, YUQING C.Cooperative guidance laws with constraints on impact time and terminal angle[J].Journal of System Simulation, 2014, 26(10):2434-2441. https://www.researchgate.net/publication/289645580_Cooperative_guidance_laws_with_constraints_on_impact_time_and_terminal_angle
    [9] 马国欣, 张友安.带有导引头视场限制的攻击时间控制导引律[J].弹道学报, 2013, 25(2):6-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddxb201302002

    MA G X, ZHANG Y A.Impact time control guidance law with seeker field-of-view limit[J].Journal of Ballistics, 2013, 25(2):6-11(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddxb201302002
    [10] ZHANG Y A, MA G X, LIU A L.Guidance law with impact time and impact angle constraints[J].Chinese Journal of Aeronautics, 2013, 26(4):960-966. doi: 10.1016/j.cja.2013.04.037
    [11] GHOSH S, GHOSE D, RAHA S. Three dimensional retro-PN based impact time control for higher speed non-maneuvering targets[C]//2013 IEEE 52nd Annual Conference on Decision and Control(CDC). Piscataway, NJ: IEEE Press, 2013: 4865-4870.
    [12] KUMAR S R, GHOSE D. Sliding mode control based guidance law with impact time constraints[C]//2013 American Control Conference(ACC). Piscataway, NJ: IEEE Press, 2013: 5760-5765.
    [13] JEON I S, LEE J I, TAHK M J.Homing guidance law for cooperative attack of multiple missiles[J].Journal of Guidance, Control, and Navigation, 2010, 33(1):275-280. doi: 10.2514/1.40136
    [14] 马国欣, 张友安, 李大鹏.基于虚拟领弹的攻击时间和攻击角度控制[J].飞行力学, 2009, 27(5):51-54. http://d.wanfangdata.com.cn/Periodical_fxlx200905014.aspx

    MA G X, ZHANG Y A, LI D P.Virtual-leader based impact time and impact angle control[J].Flight Dynamics, 2009, 27(5):51-54(in Chinese). http://d.wanfangdata.com.cn/Periodical_fxlx200905014.aspx
    [15] SHIYU Z, RUI Z, CHEN W, et al.Design of time-constrained guidance laws via virtual leader approach[J].Chinese Journal of Aeronautics, 2010, 23(1):103-108. doi: 10.1016/S1000-9361(09)60193-X
    [16] KIM T H, LEE C H, JEON I S, et al.Augmented polynomial guidance with impact time and angle constraints[J].IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4):2806-2817. doi: 10.1109/TAES.2013.6621856
    [17] 李辕, 赵继广, 白国玉, 等.基于预测碰撞点的剩余飞行时间估计方法[J].北京航空航天大学学报, 2016, 42(8):1667-1674. http://bhxb.buaa.edu.cn/CN/abstract/abstract13404.shtml

    LI Y, ZHAO J G, BAI G Y, et al.The method of time-to-go estimation based on predicted crack point[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1667-1674(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13404.shtml
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  17
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 录用日期:  2017-06-23
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回
    常见问答