Reliability analysis of bus-based embryonic electronic array based on multi-state system
-
摘要:
通过分析总线胚胎电子阵列(BBEEA)的结构特点和工作原理,将多态系统理论引入到阵列的可靠性分析中,采用通用生成函数(UGF)方法建立了阵列的可靠性分析模型。与基于
n /k 系统的阵列可靠性分析模型进行对比,验证了基于多态系统阵列可靠性分析模型的正确性和有效性。利用建立的阵列可靠性分析模型对总线胚胎电子阵列的可靠性进行分析,根据阵列的可靠性要求指导阵列的结构设计。同时,对比不同规模总线胚胎电子阵列与典型胚胎电子阵列(EEA)的可靠性,分析总线胚胎电子阵列的性能。分析结果表明:建立的阵列可靠性分析模型能够准确有效地分析阵列的可靠性,将阵列的可靠性分析与工作状态相结合,对阵列的结构设计和预防性维修决策具有重要的指导意义。-
关键词:
- 总线胚胎电子阵列(BBEEA) /
- 自修复 /
- 可靠性 /
- 多态系统 /
- n/k系统
Abstract:Through the analysis on structure characteristics and work principle of bus-based embryonic electronic array (BBEEA), the multi-state system theory is introduced to the reliability analysis of BBEEA, and the universal generating function (UGF) was used to model and analyze BBEEA reliability. Compared with BBEEA reliability model based on
n /k system, correctness and validity of BBEEA reliability model based on multi-state system are verified. BBEEA reliability is analyzed based on the proposed multi-state system reliability model so as to guide the structure design of BBEEA according to reliability requirement. At the same time, in order to analyze the performance of BBEEA, comparative analysis of reliability between typical embryonic electronic array (EEA) and BBEEA is completed. The results of analysis show that reliability model based on multi-state system can analyze BBEEA reliability in nature, and it can associate working states and reliability of BBEEA, which has great guiding significance on structure design and preventive maintenance decision of BBEEA. -
表 1 功能模块的状态及概率
Table 1. States and probability of functional block
状态 0 1 … xj … m-g+1 概率 p0(t) p1(t) … pxj(t) … pm-g+1(t) 表 2 功能模块内选择不同空闲细胞数目时总线胚胎电子阵列的MTTF值
Table 2. MTTF of BBEEA with different numbers of spare cells chosen in functional block
空闲细胞数目 2 4 5 6 7 阵列的MTTF/h 4 967 9 455 12 251 15 667 20 160 表 3 功能模块内选择不同工作细胞数目时总线胚胎电子阵列的MTTF值
Table 3. MTTF of BBEEA with different numbers of work cells chosen in functional block
工作细胞数目 1 2 3 4 6 12 阵列的MTTF/h 18 359 15 667 13 870 12 558 10 734 7 921 表 4 不同阵列结构、自修复方式和规模下阵列MTTF值
Table 4. MTTF of array with different structures, self-repair strategies and scalesh
104h 阵列结构与自修复方式 工作细胞数目 25 100 625 2 500 5 626 10 000 循环移除总线胚胎电子阵列 31.459 19.248 10.905 7.342 7 5.874 3 5.027 6 行移除二维胚胎电子阵列 12.666 5.517 6 2.010 3 0.972 55 0.641 13 0.478 13 细胞移除二维胚胎电子阵列 12.666 5.517 6 2.010 3 0.972 55 0.641 13 0.478 13 表 5 t=5 000 h时总线胚胎电子阵列工作状态及概率
Table 5. Work states and probability of BBEEA at t=5 000 h
状态 概率 0 0.090 9 1 0 2 0.000 2 3 0.000 3 4 0.000 9 5 0.000 2 6 0.002 1 8 0.003 2 9 0.001 7 10 0.001 4 12 0.009 0 15 0.002 3 16 0.007 9 18 0.008 8 20 0.005 9 24 0.023 0 25 0.000 8 27 0.004 4 30 0.011 5 32 0.013 5 36 0.027 0 40 0.014 5 45 0.009 0 48 0.040 0 50 0.003 8 54 0.013 1 60 0.034 6 64 0.016 5 72 0.043 3 75 0.006 1 80 0.024 4 81 0.004 3 90 0.024 9 96 0.043 1 100 0.011 0 108 0.025 0 120 0.052 2 128 0.012 9 135 0.017 7 144 0.043 6 150 0.015 8 160 0.024 6 162 0.003 3 180 0.046 2 192 0.028 1 200 0.015 6 216 0.011 9 225 0.011 9 240 0.049 2 250 0.003 3 256 0.005 7 270 0.006 8 288 0.012 8 300 0.028 4 320 0.014 4 324 0.001 0 360 0.015 4 375 0.005 4 384 0.004 1 400 0.013 7 432 0.002 2 450 0.004 6 480 0.007 8 500 0.005 8 540 0.001 3 576 0.001 3 600 0.005 0 625 0.000 9 648 0.000 1 720 0.001 4 750 0.001 1 864 0.000 1 900 0.000 5 1 080 0.000 1 1 296 0 -
[1] 蔡金燕, 朱赛, 孟亚峰.一种新型的仿生电子细胞基因存储结构[J].电子学报, 2016, 44(8):1915-1923. http://d.old.wanfangdata.com.cn/Periodical/dianzixb201608021CAI J Y, ZHU S, MENG Y F.A novel gene memory structure for bio-inspired electronic cell[J].Acta Electronica Sinica, 2016, 44(8):1915-1923(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dianzixb201608021 [2] GARIS H D. Genetic programming: Artificial nervous systems, artificial embryos and embryological electronics[C]//Proceeding of the 1st Workshop on Parallel Problem Solving from Nature, 1990: 117-123. [3] MANGE D, GOEKE M, MADON D, et al. Embryonics: A new family of coarse-grained field-programmable gate array with self-repair and self-reproducing properties[C]//Proceeding of 1996 IEEE International Symposium on Circuits and Systems. Piscataway, NJ: IEEE Press, 1996: 25-28. [4] YAO X, HIGUCHI T.Promises and challenges of evolvable hardware[J].IEEE Transaction on Systems, Man and Cybernetics, Part C, 1999, 29(1):87-97. doi: 10.1109/5326.740672 [5] ORTEGA C, TYRRELL A. Biologically inspired reconfigurable hardware for dependable applications[C]//IEEE Half-day Colloquium on Hardware Systems for Dependable Applications. Piscataway, NJ: IEEE Press, 1997: 1-4. [6] ORTEGA C, TYRRELL A. Reliability analysis in self-repairing embryonic systems[C]//Proceeding of the 1st NASA/DoD Workshop on Evolvable Hardware. Piscataway, NJ: IEEE Press, 1999: 120-128. [7] 李廷鹏. 基于总线结构的仿生自修复技术研究[D]. 长沙: 国防科学技术大学, 2012: 17-32.LI T P. Research on bio-inspired self-repairing technology based on bus structure[D]. Changsha: National University of Defense Technology, 2012: 17-32(in Chinese). [8] SAMIE M, DRAGFFY G, POPESCU A. Prokaryotic bio-inspired model for embryonic[C]//Proceedings of the 4th NASA/ESA Conference on Adaptive Hardware and Systems. Piscataway, NJ: IEEE Press, 2009: 163-170. [9] 李岳, 王南天, 钱彦岭.原核细胞仿生自修复电路设计[J].国防科学技术大学学报, 2012, 34(3):154-157. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gfkjdxxb201203030LI Y, WANG N T, QIAN Y L.Self-healing circuit design inspired by prokaryotic cell[J].Journal of National University of Defense Technology, 2012, 34(3):154-157(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gfkjdxxb201203030 [10] ZHU S, CAI J Y, MENG Y F.Partial-DNA cyclic memory for bio-inspired electronic cell[J].Genetic Programming and Evolvable Machines, 2016, 17(2):83-117. doi: 10.1007/s10710-015-9248-2 [11] 朱赛, 蔡金燕, 孟亚峰, 等.胚胎电子细胞中基因备份数目优选方法[J].北京航空航天大学学报, 2016, 42(2):328-336. http://bhxb.buaa.edu.cn/CN/abstract/abstract13782.shtmlZHU S, CAI J Y, MENG Y F, et al.Gene backup number selection method for embryonics cell[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):328-336(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13782.shtml [12] ZHANG Z, WANG Y R. Method to self-repair reconfiguration strategy selection of embryonic cellular array on reliability analysis[C]//2014 NASA/ESA Conference on Adaptive Hardware and Systems(AHS). Piscataway, NJ: IEEE Press, 2014: 225-232. [13] 张砦, 王友仁.基于可靠性分析的胚胎硬件容错策略选择方法[J].系统工程理论与实践, 2013, 33(1):236-242. doi: 10.12011/1000-6788(2013)1-236ZHANG Z, WANG Y R.Guidelines to fault-tolerant strategy selection in embryonics hardware based on reliability analysis[J].Systems Engineering-Theory & Practice, 2013, 33(1):236-242(in Chinese). doi: 10.12011/1000-6788(2013)1-236 [14] 张砦, 王友仁.基于可靠性优化的芯片自愈型硬件细胞阵列布局方法[J].航空学报, 2014, 35(12):3392-3402. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201412022.htmZHANG Z, WANG Y R.Method to reliability improvement of chip self-healing hardware by array layout reformation[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3392-3402(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201412022.htm [15] 张砦, 王友仁.应用设计过程的胚胎硬件细胞单元粒度优化方法[J].航空学报, 2016, 37(11):3502-3511. https://www.cnki.com.cn/qikan-C-C7-HKXB-2016-11.htmlZHANG Z, WANG Y R.Cell granularity optimization method of embryonic hardware in application design process[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3502-3511(in Chinese). https://www.cnki.com.cn/qikan-C-C7-HKXB-2016-11.html [16] 林勇, 罗文坚, 钱海, 等.n×n阵列胚胎电子系统应用中的优化设计问题分析[J].中国科学技术大学学报, 2007, 37(2):171-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxjsdxxb200702011LIN Y, LUO W J, QIAN H, et al.Analysis of optimization design in n×n array embryonic system applications[J].Journal of University of Science and Technology of China, 2007, 37(2):171-176(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxjsdxxb200702011 [17] 张峻宾, 蔡金燕, 孟亚峰.基于EHW和RBT的电子电路故障自修复策略性能分析[J].北京航空航天大学学报, 2016, 42(11):2423-2435. http://bhxb.buaa.edu.cn/CN/abstract/abstract13843.shtmlZHANG J B, CAI J Y, MENG Y F.The performance of electronic circuit fault self-repair strategy based on EHW and RBT[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11):2423-2435(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13843.shtml [18] 李春洋. 基于多态系统理论的可靠性分析与优化设计方法研究[D]. 长沙: 国防科学技术大学, 2010: 48-91.LI C Y. Research on reliability analysis and optimization based on the multi-state system theory[D]. Changsha: National University of Defense Technology, 2010: 48-91(in Chinese). [19] 潘刚, 尚朝轩, 蔡金燕, 等.基于Semi-Markov模型的多态系统不完全维修决策研究[J].航空学报, 2017, 38(2):320178. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201702019.htmPAN G, SHANG C X, CAI J Y, et al.Research on imperfect maintenance decision for multi-syatem based on Semi-Markov model[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):320178(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXB201702019.htm [20] LISNIANSKI A, FRENKEL I, DING Y.Multi-state system reliability analysis and optimization for engineers and industrial managers[M].Berlin:Springer, 2010:143-198. [21] 王涛, 蔡金燕, 孟亚峰.总线细胞阵列中空闲细胞冗余数量研究[J].微电子学与计算机, 2016, 33(9):1-5. http://mall.cnki.net/magazine/Article/WXYJ201609036.htmWANG T, CAI J Y, MENG Y F.Research on the redundant number of spare cells in bus-based embryonic array[J].Microelectronics & Computer, 2016, 33(9):1-5(in Chinese). http://mall.cnki.net/magazine/Article/WXYJ201609036.htm [22] 王涛, 蔡金燕, 孟亚峰, 等.胚胎电子阵列中空闲细胞的配置研究[J].航空学报, 2017, 38(4):320266. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y953845WANG T, CAI J Y, MENG Y F, et al.Research on the configuration of idle cells in embryonics electronic cell array[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(4):320266(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y953845