留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于K-V阻尼模型的铁木辛柯梁振动响应分析

张夏阳 祝明 武哲

张夏阳, 祝明, 武哲等 . 基于K-V阻尼模型的铁木辛柯梁振动响应分析[J]. 北京航空航天大学学报, 2018, 44(3): 500-507. doi: 10.13700/j.bh.1001-5965.2017.0196
引用本文: 张夏阳, 祝明, 武哲等 . 基于K-V阻尼模型的铁木辛柯梁振动响应分析[J]. 北京航空航天大学学报, 2018, 44(3): 500-507. doi: 10.13700/j.bh.1001-5965.2017.0196
ZHANG Xiayang, ZHU Ming, WU Zheet al. Response analysis of Timoshenko beam based on K-V damping model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 500-507. doi: 10.13700/j.bh.1001-5965.2017.0196(in Chinese)
Citation: ZHANG Xiayang, ZHU Ming, WU Zheet al. Response analysis of Timoshenko beam based on K-V damping model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 500-507. doi: 10.13700/j.bh.1001-5965.2017.0196(in Chinese)

基于K-V阻尼模型的铁木辛柯梁振动响应分析

doi: 10.13700/j.bh.1001-5965.2017.0196
基金项目: 

国家重点研发计划 2016YFB1200100

详细信息
    作者简介:

    张夏阳  男,博士研究生。主要研究方向:飞行器设计

    祝明  男,副教授,博士生导师。主要研究方向:飞行器设计

    武哲  男,教授,博士生导师。主要研究方向:飞行器设计

    通讯作者:

    祝明, E-mail: zhumingbuaa@163.com

  • 中图分类号: V214.3+7

Response analysis of Timoshenko beam based on K-V damping model

Funds: 

National Key R&D Program of China 2016YFB1200100

More Information
  • 摘要:

    基于铁木辛柯梁理论,对两端固支梁在承受阶跃载荷和移动载荷下的响应进行了分析。借助K-V阻尼模型,研究了阻尼对系统动态性能的影响。为了进行理论求解,推导了比例阻尼的使用条件,继而运用实模态叠加法理论,最终导出了系统受载时响应的解析解。数值分析结果表明,该方法准确可靠,为其他数值算法,如拉普拉斯变换法,提供了横向对比的依据。有阻尼振动的分析表明系统在高阶模态具有过临界阻尼特性,在低阶模态为收敛振荡特性。阻尼对系统的响应有很大影响,尤其在大长细比时,甚至出现了振幅增大的情形。此外,在阶跃载荷的作用下,系统均呈现出了低频模态为主的响应特性。

     

  • 图 1  Durbin数值反拉普拉斯求解效果示意图

    Figure 1.  Schematic of solving accuracy of Durbin's inverse Laplace

    图 2  模态频率和阻尼比变化趋势图

    Figure 2.  Changing tendency of modal frequencies and damping ratios

    图 3  归一化模态振型

    Figure 3.  Normalized modal shapes

    图 4  Lr=10模态响应

    Figure 4.  Modal response when Lr=10

    图 5  Lr=100模态响应

    Figure 5.  Modal response when Lr=100

    图 6  d*=0.5时无量纲位移总响应

    Figure 6.  Non-dimensionalized response of total displacement when d*=0.5

    图 7  d*=0.25时无量纲位移总响应

    Figure 7.  Non-dimensionalized response of total displacement when d*=0.25

    图 8  Lr=10无量纲位移总响应

    Figure 8.  Non-dimensionalized response of total displacement when Lr=10

    图 9  Lr=100无量纲位移总响应

    Figure 9.  Non-dimensionalized response of total displacement when Lr=100

  • [1] LABUSCHAGNE A, RENSBURG N F J V, MERWE A J V D.Comparison of linear beam theories[J].Mathematical & Computer Modelling, 2009, 49(1-2):20-30. https://www.sciencedirect.com/science/article/pii/S0895717708002112
    [2] STEPHEN N G.The second spectrum of Timoshenko beam theory-Further assessment[J].Journal of Sound and Vibration, 2006, 292(1-2):372-389. doi: 10.1016/j.jsv.2005.08.003
    [3] HAN S M, BENAROYA H, WEI T.Dynamics of transversely vibrating beams using four engineering theories[J].Journal of Sound and Vibration, 1999, 225(5):935-988. doi: 10.1006/jsvi.1999.2257
    [4] KOCATVRK T, ÇIM ÇEK M.Dynamic analysis of eccentrically prestressed viscoelastic Timoshenko beams under a moving harmonic load[J].Computers & Structures, 2006, 84(31):2113-2127. https://www.sciencedirect.com/science/article/pii/S0045794906002744
    [5] BOLEY B, CHAO C.Some solutions of the timoshenko beam equations[J].Journal of Applied Mechanics, 1955, 25:579-586. http://www.worldcat.org/title/some-solutions-of-the-timoshenko-beam-equations/oclc/43827789
    [6] XIN Y F, SONG Y C, ZHU D C, et al.Elastic impact on finite Timoshenko beam[J].Acta Mechanica Sinica (English Series), 2002, 18(3):252-263. doi: 10.1007/BF02487953
    [7] 邢誉峰.有限长Timoshenko梁弹性碰撞接触瞬间的动态特性[J].力学学报, 1999, 31(1):68-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb199901008

    XIN Y F.The characteristics of Timoshenko beam during the process of elastic impact and contact[J].Acta Mechanica Sinica, 1999, 31(1):68-74(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb199901008
    [8] SU Y C, MA C C.Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods[J].International Journal of Solids & Structures, 2012, 49(9):1158-1176. http://www.sciencedirect.com/science/article/pii/S0020768312000297
    [9] SU Y C, MA C C.Theoretical analysis of transient waves in a simply-supported Timoshenko beam by ray and normal mode methods[J].International Journal of Solids & Structures, 2011, 48(3):535-552. http://www.sciencedirect.com/science/article/pii/S0020768310003756
    [10] HU M Y, WANG A W, ZHANG X M.Approximate analytical solutions and experimental analysis for transient response of constrained damping cantilever beam[J].Applied Mathematics and Mechanics, 2010, 31(11):1359-1370. doi: 10.1007/s10483-010-1368-9
    [11] CHEN W R.Parametric studies on bending vibration of axially-loaded twisted Timoshenko beams with locally distributed Kelvin-Voigt damping[J].International Journal of Mechanical Sciences, 2014, 88:61-70. doi: 10.1016/j.ijmecsci.2014.07.006
    [12] GU L L, QIN Z Y, CHU F L.Analytical analysis of the thermal effect on vibrations of a damped Timoshenko beam[J].Mechanical Systems & Signal Processing, 2014, 60-61:619-643. https://www.sciencedirect.com/science/article/pii/S0888327014004634
    [13] ZHANG X Y, ZHU M, LIANG H Q. Dynamic analysis of the continuous fluid-structure system based on Timoshenko model and considering damping: AIAA-2017-1984[R]. Reston: AIAA, 2017. https://www.researchgate.net/publication/313455622_Dynamic_analysis_of_the_continuous_fluid-structure_system_based_on_Timoshenko_model_and_considering_damping
    [14] DUBNER H, ABATE J.Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform[J].Journal of the ACM, 1968, 15(1):115-123. doi: 10.1145/321439.321446
    [15] DURBIN F.Numerical inversion of Laplace transforms:An efficient improvement to Dubner and Abate's method[J].Computer Journal, 1974, 17(4):371-376. doi: 10.1093/comjnl/17.4.371
    [16] JENSEN J J.On the shear coefficient in Timoshenko's beam theory[J].Journal of Applied Mechanics, 1966, 33(2):621-635. https://www.sciencedirect.com/science/article/pii/0022460X83905114
    [17] ZHAO H L, LIU K S, ZHANG C G.Stability for the Timoshenko beam system with local Kelvin-Voigt damping[J].Acta Mathematica Sinica(English Series), 2005, 21(3):655-666. doi: 10.1007/s10114-003-0256-4
    [18] CAPSONI A, VIGANÒG M, BANI-HANI K.On damping effects in Timoshenko beams[J].International Journal of Mechanical Sciences, 2013, 73(8):27-39. https://www.sciencedirect.com/science/article/pii/S0020740313001161
  • 加载中
图(9)
计量
  • 文章访问数:  838
  • HTML全文浏览量:  109
  • PDF下载量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-05
  • 录用日期:  2017-07-12
  • 网络出版日期:  2018-03-20

目录

    /

    返回文章
    返回
    常见问答