Evaluation of directional ground stability and control characteristics in crosswind landing for civil airplane based on digital virtual flight
-
摘要:
基于民机的适航要求,建立了一种基于数字虚拟飞行的侧风着陆地面航向操稳特性评估方法。以着陆滑跑过程中最大机体倾斜角和最大航迹偏移量作为评估的关键参数,依据人机闭环数字飞行仿真计算结果,评估了某大型水陆两栖飞机侧风着陆任务的地面航向操稳特性适航符合性。对于20 kts侧风分量,算例飞机着陆滑跑的机身最大机体倾斜角为3.44°,最大侧向航迹偏差为2.51 m,能够满足适航要求。进一步研究表明,侧风分量大小、道面污染情况均影响侧风着陆的安全性。在干道面上当侧风分量超过30 kts时即会出现地面打转现象;道面污染增加滑跑减速所消耗的跑道长度,同时不利于驾驶员对滑行航向的控制。所提评估方法可应用于民机的概念和方案设计阶段,并为后续开展飞行试验验证等提供理论参考。
Abstract:Based on airworthiness requirements of civil airplane, a method for evaluating ground stability and control of crosswind landing based on digital virtual flight is established. With maximum bank angle of airframe and maximum lateral deviation during the landing roll-out as key parameters, and in accordance with the results of pilot-in-loop digital flight simulation, ground stability and control as well as airworthiness compliance of crosswind landing task of a certain large amphibious aircraft were evaluated. Simulation result shows that, for a 20 kts crosswind component, the aircraft conducted a safe and well-behaving landing roll with a 3.44° maximum bank angle and 2.51 m maximum lateral deviation on dry runway, which was of airworthiness compliance. Further research indicates that crosswind component value and the extent of runway contamination significantly affect the safety of crosswind landing roll-out. A 30 kts crosswind component might result in uncontrollable ground-looping tendency on dry runway, while contaminated runway increases landing roll-out distance and brings difficulty to direction control of taxiing. The method delivered in this paper can be applied to the preliminary design phase of civil airplane and offer theoretical references for subsequent flight tests.
-
表 1 驾驶员操纵模型参数取值
Table 1. Values of pilot control model parameters
通道 Kv TL/s TD/s τv/s Km τm/s 俯仰 42 0.25 0.30 0.15 70 0.10 滚转 15 0.10 0.15 0.15 24 0.10 偏航 60 0.75 0.15 0.15 70 0.10 -
[1] U.S.Department of Transportation, Faderal Aviation Admini-stration.Airplane flying handbook:FAA-H-8083-3A[M].Oklahoma City:FAA, 2004:8-33. [2] 蒋康博, 蒙泽海, 叶忱.自然风对飞机着陆的影响[J].飞行力学, 2014, 32(3):197-199. http://d.wanfangdata.com.cn/Periodical_fxlx201403002.aspxJIANG K B, MENG Z H, YE C.The effect of natural wind on aircraft landing[J].Flight Dynamics, 2014, 32(3):197-199(in Chinese). http://d.wanfangdata.com.cn/Periodical_fxlx201403002.aspx [3] 中国民用航空局. 中国民用航空规章第25部运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民用航空局, 2011.Civil Aviation Administration of China. China civil aviation re-gulations Part 25: Airworthiness standards of transport category aircraft: CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China, 2011(in Chinese). [4] 程不时.飞机设计手册第5册:民用飞机总体设计[M].北京:航空工业出版社, 2005.CHENG B S.Aircraft design handbook 5th book:Preliminary design of civil airplane[M].Beijing:Aviation Industry Press, 2005(in Chinese). [5] 郑作棣.运输类飞机适航标准技术咨询手册[M].北京:航空工业出版社, 1995.ZHENG Z D.Technical advisory for airworthiness standards of transport category aircraft[M].Beijing:Aviation Industry Press, 1995(in Chinese). [6] 修忠信, 由立岩.运输类飞机合格审定飞行试验指南[M].上海:上海交通大学出版社, 2013.XIU Z X, YOU L Y.Flight test guide for certification of transport category airplanes[M].Shanghai:Shanghai Jiaotong University Press, 2013(in Chinese). [7] BALTES E, SPITZ W. Virtual flight test as advanced step in aircraft development: AIAA-2002-5823[R]. Reston: AIAA, 2002. doi: 10.2514/6.2002-5823 [8] GEORGE R, DOYLE J.A review of computer simulations for aircraft-surface dynamics[J].Journal of Aircraft, 1986, 23(4):257-265. doi: 10.2514/3.45298 [9] COETZEE E B. Modelling and nonlinear analysis of aircraft ground manoeuvres[D]. Bristol: University of Bristol, 2006. https://www.researchgate.net/publication/260190619_Modelling_and_nonlinear_analysis_of_aircraft_ground_manoeuvres [10] SCHARL J, MAVRIS D N, BURDUN I Y. Use of flight simulation in early design: Formulation and application of the virtual testing and evaluation methodology: AIAA-2000-5590[R]. Reston: AIAA, 2000. http://www.researchgate.net/publication/2496250_Use_of_Flight_Simulation_in_Early_Design_Formulation_and_Application_of_the_Virtual_Testing_and_Evaluation_Methodology [11] BURDUN I Y, DELAURENTIS D A, MAVRIS D N. Modeling and simulation of airworthiness requirements for an HSCT prototype in early design: AIAA-1998-4936[R]. Reston: AIAA, 1998. doi: 10.2514/6.1998-4936 [12] U. S. Department of Transportation, Faderal Aviation Admini-stration. Flight test guide for certification of transport category airplanes: AC No. 25-7C[S]. Oklahoma City: FAA, 2012. [13] KRVGER W, BESSELINK I, COWLING D, et al.Aircraft landing gear dynamics:Simulation and control[J].Vehicle System Dynamics, 1997, 28(2-3):119-158. doi: 10.1080/00423119708969352 [14] ETKIN B.Dynamics of flight:Stability and control[M].New York:John Wiley and Sons, 1995. [15] PI W S, YAMANE J R, SMITH M J C. Generic aircraft ground operation simulation: AIAA-1986-0989[R]. Reston: AIAA, 1986. http://www.researchgate.net/publication/271372227_Generic_aircraft_ground_operation_simulation [16] KHAPANE P D.Simulation of asymmetric landing and typical ground maneuvers for large transport aircraft[J].Aerospace Science and Technology, 2003, 7(8):611-619. https://www.sciencedirect.com/science/article/pii/S127096380300066X [17] SMILEY R F, HORNE W B. Mechanical properties of pneuma-tic tires with special reference to modern aircraft tires: NASA TR-64[R]. Washington, D. C. : NASA, 1960. [18] WOODA G, BLUNDELL M, SHARMA S.A low parameter tyre model for aircraft ground dynamic simulation[J].Materials and Design, 2012, 35:820-832. https://www.researchgate.net/publication/251540126_A_low_parameter_tyre_model_for_aircraft_ground_dynamic_simulation [19] 刘海良, 王立新.基于数字虚拟飞行的民用飞机纵向地面操稳特性评估[J].航空学报, 2015, 36(5):1432-1441. http://www.cnki.com.cn/Article/CJFDTotal-HKXS201503014.htmLIU H L, WANG L X.Assessment of longitudinal ground stabi-lity and control for civil transport aircraft based on virtual flight testing methodology[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1432-1441(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXS201503014.htm [20] HOSMAN R, VAN DER GEEST P, VAN DER ZEE J. Development of a pilot model for the manual balked landing maneuver: AIAA-2009-5818[R]. Reston: AIAA, 2009. doi: 10.2514/6.2009-5818 [21] POOL D M, ZAAL P M T, DAMVELD H J, et al. Pilot equation in manual control of aircraft dynamics[C]//Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway, NJ: IEEE Press, 2009: 2480-2485. http://dl.acm.org/citation.cfm?id=1732128 [22] ROBINSON J, BARNES S, WEBB M, et al. The use of pilot modeling in aviation reguatory affairs: AIAA-2009-5825[R]. Reston: AIAA, 2009. [23] 高金源, 李陆豫, 冯亚昌, 等.飞机飞行品质[M].北京:国防工业出版社, 2003.GAO J Y, LI L Y, FENG Y C, et al.Aircraft handling qualities[M].Beijing:National Defense Industry Press, 2003(in Chinese). [24] 涂章杰, 王立新, 陈俊平.基于数字虚拟飞行的民机复飞爬升梯度评估[J].北京航空航天学学报, 2017, 43(12):2530-2538. http://www.doc88.com/p-3107117761341.htmlTU Z J, WANG L X, CHEN J P.Assessment of airworthiness compliance of go-around climb gradient for civil aircraft based on digital virtual flight testing method[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12):2530-2538(in Chinese). http://www.doc88.com/p-3107117761341.html