留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kriging模型的浮空器氦气昼夜温差最优化

林康 马云鹏 武哲 王强

林康, 马云鹏, 武哲, 等 . 基于Kriging模型的浮空器氦气昼夜温差最优化[J]. 北京航空航天大学学报, 2018, 44(3): 542-548. doi: 10.13700/j.bh.1001-5965.2017.0221
引用本文: 林康, 马云鹏, 武哲, 等 . 基于Kriging模型的浮空器氦气昼夜温差最优化[J]. 北京航空航天大学学报, 2018, 44(3): 542-548. doi: 10.13700/j.bh.1001-5965.2017.0221
LIN Kang, MA Yunpeng, WU Zhe, et al. Optimization of aerostat helium temperature differences between day and night based on Kriging model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 542-548. doi: 10.13700/j.bh.1001-5965.2017.0221(in Chinese)
Citation: LIN Kang, MA Yunpeng, WU Zhe, et al. Optimization of aerostat helium temperature differences between day and night based on Kriging model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 542-548. doi: 10.13700/j.bh.1001-5965.2017.0221(in Chinese)

基于Kriging模型的浮空器氦气昼夜温差最优化

doi: 10.13700/j.bh.1001-5965.2017.0221
详细信息
    作者简介:

    林康  男, 博士研究生。主要研究方向:浮空器热力学

    马云鹏  男, 博士, 讲师, 硕士生导师。主要研究方向:浮空器总体设计

    武哲  男, 博士, 教授, 博士生导师。主要研究方向:浮空器总体设计

    王强  男, 博士, 研究员, 博士生导师。主要研究方向:飞行器气动分析

    通讯作者:

    马云鹏, E-mail: myp@buaa.edu.cn

  • 中图分类号: V273

Optimization of aerostat helium temperature differences between day and night based on Kriging model

More Information
  • 摘要:

    分析浮空器氦气昼夜温差时通常将整个囊体蒙皮涂层设置为同一种材料,分析材料的吸收率与发射率对氦气昼夜温差的影响。为进一步减小氦气昼夜温差,提出了将囊体分为迎光面和背光面,迎光面采用吸收率低的材料,背光面采用发射率高的材料。建立了囊体热力学模型,采用Kriging模型对囊体不同部位的材料特性进行优化,其基本思想是将囊体划分为48个部分,采用拉丁超立方体方法进行抽样,进行热力学分析得到样本的响应,以此建立Kriging近似模型。经过该方法优化后发现,氦气的昼夜温差减小到28.6 K,比传统的分析减少7.7%。

     

  • 图 1  太阳高度角与方位角

    Figure 1.  Solar altitude angle and azimuth angle

    图 2  优化流程示意图

    Figure 2.  Schematic of optimization process

    图 3  囊体划分图

    Figure 3.  Envelop division map

    图 4  囊体温度分布

    Figure 4.  Temperature distribution of envelop

    图 5  样本点1温度分布

    Figure 5.  Temperature distribution of sample point 1

    图 6  改进后囊体白天温度分布

    Figure 6.  Temperature distribution of envelop during day after improvement

    表  1  云遮系数对太阳辐射的影响

    Table  1.   Influence of cloud cover coefficient on solar radiation

    条件 太阳直接辐射强度 地面反射辐射强度
    HHc QD, real =QD QRef=[C2ρg+(1-CF)ρc]·(QD+ QAtm)
    HHc QD, real =CQD QRef=g(QD+ QAtm)
    注:Hc—云层高度;ρc—云层反射率。
    下载: 导出CSV

    表  2  浮空器参数

    Table  2.   Parameters of aerostat

    参数 数值
    直径/m 30
    面积/m2 2 826
    体积/m3 14 130
    飞行高度/km 20
    飞行时间 6月21日(夏至日)
    飞行纬度/(°N) 40
    下载: 导出CSV

    表  3  常用材料的热辐射特性参数

    Table  3.   Thermal radiation characteristic parameters of common materials

    材料 η ε
    白色PVF 0.25~0.40 0.75~0.90
    白色PU 0.35 0.8~0.9
    镀银Teflon 0.10~0.25 0.5~0.8
    下载: 导出CSV

    表  4  样本点1的吸收率

    Table  4.   Absorption rate of sample point 1

    编号 吸收率
    1 0.34
    2 0.23
    3 0.12
    4 0.36
    5 0.23
    6 0.13
    7 0.43
    8 0.32
    9 0.24
    10 0.14
    11 0.10
    12 0.49
    13 0.35
    14 0.18
    15 0.25
    16 0.26
    17 0.18
    18 0.47
    19 0.42
    20 0.48
    21 0.17
    22 0.37
    23 0.29
    24 0.45
    25 0.39
    26 0.33
    27 0.25
    28 0.28
    29 0.46
    30 0.19
    31 0.38
    32 0.28
    33 0.41
    34 0.42
    35 0.12
    36 0.16
    37 0.28
    38 0.11
    39 0.31
    40 0.28
    41 0.18
    42 0.37
    43 0.27
    44 0.12
    45 0.41
    46 0.23
    47 0.26
    48 0.18
    下载: 导出CSV
  • [1] NISHIMURA J.Scientific ballooning in Japan-An view of recent activites[J].Advances in Space Research, 2006, 37(11):2005-2014. doi: 10.1016/j.asr.2005.03.053
    [2] COLOZZA A, DOLCE J L. High-altitude, long-endurance airships for coastal surveillance: NASA/TM-2005-213427[R]. Washington, D. C. : NASA Glenn Research Center, 2005.
    [3] ANDROULAKAKIS S P, JUDY R A. Status and plans of high altitude airships program[C]//Aerodynamic Decelerator Systems Technology Conferences. Reston: AIAA, 2013.
    [4] LEE Y G, KIM D M, YEOM C H.Development of Korean high altitude platform systems[J].International Journal of Wireless Information Networks, 2006, 13(1):31-42. doi: 10.1007/s10776-005-0018-6
    [5] 刘东旭, 杨永强, 吕明云, 等.蒙皮热辐射特性对平流层浮空器氦气温度影响[J].北京航空航天大学学报, 2010, 36(7):836-840. http://bhxb.buaa.edu.cn/CN/abstract/abstract8450.shtml

    LIU D X, YANG Y Q, LÜ M Y, et al.Effect of envelop thermal radiative properties on the stratospheric super-pressure LAT vehicle helium temperature[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7):836-840(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8450.shtml
    [6] WU J T, FANG X D, WANG Z G, et al.Thermal modeling of stratospheric airships[J].Aerospace Sciences, 2015, 75:26-37. doi: 10.1016/j.paerosci.2015.04.001
    [7] DAI Q M, FANG X D, LI X J, et al.Performance simulation of high altitude scientific balloons[J].Advances in Space Research, 2012, 49(6):1045-1052. doi: 10.1016/j.asr.2011.12.026
    [8] 方贤德, 王伟志, 李小建.平流层飞艇热仿真初步探讨[J].航天返回与遥感, 2007, 28(2):5-9. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hfyg200702001&dbname=CJFD&dbcode=CJFQ

    FANG X D, WANG W Z, LI X J.A study of thermal simulation of stratospheric airships[J].Spacecraft Recovery and Remote Sensing, 2007, 28(2):5-9(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hfyg200702001&dbname=CJFD&dbcode=CJFQ
    [9] LIU Q, WU Z, ZHU M, et al.A comprehensive numerical model investigating the thermal-dynamic performance of scientific ba-lloon[J].Advances in Space Research, 2014, 53(2):325-338. doi: 10.1016/j.asr.2013.11.011
    [10] LIU Q, LI Z J, YANG Y C, et al. Thermal simulation and expe-riments for a stratospheric balloon gondola[C]//AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2015, 6: 325-338.
    [11] LI D F, XIA X L, SUN C.Experimental investigation of transient thermal behavior of an airship under different solar radiation and airflow conditions[J].Advances in Space Research, 2014, 53(5):862-869. doi: 10.1016/j.asr.2013.12.032
    [12] XIA X L, LI D F, SUN C, et al.Transient thermal behavior of stratospheric balloons at float conditions[J].Advances in Space Research, 2010, 46(9):1184-1190. doi: 10.1016/j.asr.2010.06.016
    [13] 夏新林, 李德福, 杨小川.平流层浮空器的热特性与研究现状[J].航空学报, 2009, 30(4):577-583. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb200904002&dbname=CJFD&dbcode=CJFQ

    XIA X L, LI D F, YANG X C.Thermal characteristics of stratos-pheric aerostats and their research[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(4):577-583(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb200904002&dbname=CJFD&dbcode=CJFQ
    [14] YAO W, LU X C, WANG C, et al.A heat transient model for the thermal behavior prediction of stratospheric airships[J].Applied Thermal Engineering, 2014, 70(1):380-387. doi: 10.1016/j.applthermaleng.2014.05.050
    [15] KENYA H, KUNIHISA E, MASAAKI S, et al. Experimental study of thermal modeling for stratospheric platform airships[C]//AIAA's 3rd Aviation Technology, Integration, and Operations(ATIO) Conference. Reston: AIAA, 2003, 5: 74-89.
    [16] SIMPSON T W, MAUERY T M, KOPTEE J J, et al.Kriging models for global approximation in simulation based multidisciplinary design optimization[J].AIAA Journal, 2001, 39(12):2233-2241. doi: 10.2514/2.1234
    [17] TOAL D J J, BRESSLOFF N W, KEAN A J.Kriging hyperparameter tuning strategies[J].AIAA Journal, 2008, 46(5):1240-1252. doi: 10.2514/1.34822
    [18] LIU J, HAN Z H, SONG W P. Efficient kriging-based optimization design of transonic airfoils: Some key issues: AIAA-2012-0967[R]. Reston: AIAA, 2012.
    [19] HAN Z H, LIU J, SONG W P, et al. Surrogate-based aerodynamic shap optimization with application to wind turbine airfoils: AIAA-2013-1108[R]. Reston: AIAA, 2013.
    [20] 张柱国, 姚卫星, 刘克龙.基于进化Kriging模型的金属加筋板结构布局优化方法[J].南京航空航天大学学报, 2008, 40(4):497-500. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=njhk200804015&dbname=CJFD&dbcode=CJFQ

    ZHANG Z G, YAO W X, LIU K L.Configuration optimization method for metallic stiffened panel structure based on updated Kriging model[J].Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(4):497-500(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=njhk200804015&dbname=CJFD&dbcode=CJFQ
    [21] 肖立峰, 张广泉, 张以都.基于进化Kriging代理模型的结构形状优化方法[J].机械设计, 2009, 26(7):57-60. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxsj200907020&dbname=CJFD&dbcode=CJFQ

    XIAO L F, ZHANG G Q, ZHANG Y D.Optimization method of structural shape based on Kriging surrogate model[J].Journal of Machine Design, 2009, 26(7):57-60(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxsj200907020&dbname=CJFD&dbcode=CJFQ
    [22] 周秀骥, 陶善昌, 姚克亚.高等大气物理学(上册)[M].北京:气象出版社, 1991:85-95.

    ZHOU X J, TAO S C, YAO K Y.Advanced atmospheric physics(Ⅰ)[M].Beijing:China Meteorological Press, 1991:85-95(in Chinese).
    [23] FARLEY R E. BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons[C]//AIAA's 5th Aviation, Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2005.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  679
  • HTML全文浏览量:  119
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 录用日期:  2017-07-07
  • 网络出版日期:  2018-03-20

目录

    /

    返回文章
    返回
    常见问答