-
摘要:
为了探讨花朵授粉算法(FPA)在解算多模函数优化问题中存在的不足,通过定义种群多样性及差异性指标,定性分析了FPA在多模复杂函数优化中的寻优缺点。基于模拟退火思想优化全局授粉过程,并利用Nelder-Mead单纯形搜索技术对花朵局部授粉进行重构,提出一种新的花朵授粉寻优架构。仿真结果表明,相对于基本的FPA、布谷鸟算法、萤火虫算法,改进花朵授粉算法能够有效避免陷入局部最优,具备优异的全局勘探和局部开采能力,对多模优化问题具有一定优势。
-
关键词:
- 花朵授粉算法(FPA) /
- 模拟退火 /
- Nelder-Mead单纯形法 /
- 多模函数优化
Abstract:In order to discuss the defects of flower pollination algorithm (FPA) in solving multimodal optimization problems, the optimal disadvantages of flower pollination algorithm in multimodal function optimization were qualitatively analyzed by defining population diversity and difference index. And then a new framework of FPA was constructed by optimizing the global pollination process based on the simulated annealing idea and using Nelder-Mead simplex search method to reconstruct the local pollination process. The simulation results show that the improved flower pollination algorithm can effectively avoid falling into local optimum and has better global exploration and local exploitation abilities, which has advantages to solve multimodal function optimization, compared with primary flower pollination algorithm, cuckoo search algorithm and firefly algorithm.
-
表 1 4个算法的参数设置
Table 1. Parameter setup for four algorithms
算法 参数设置 FPA 转换概率p=0.8;参数λ=1.5 CS 发现概率pa=0.25;步长调节量α=0.01;
参数β=1.5FA 步长因子α=0.25;吸引度因子β=0.2;
光强吸收强度γ=1NS-FPA 转换概率p=0.8;温度衰减系数γ=0.7;
初温概率p0=0.8;参数λ=1.5注:公共参数:种群规模N=50;最大迭代次数Kmax,F1~F13取100,F14~F16取10 000。 表 2 16个标准测试函数
Table 2. 16 standard test functions
代号 函数 表达式 解空间 最小值 F1 Sphere [-100, 100]2 0 F2 Brid [-2π, 2π]2 -106.764 5 F3 Roots [-2, 2]2 -1 F4 Bohachevsky [-100, 100]2 0 F5 Eggcrate [-10, 10]2 0 F6 Guichi-f4 [-2, 2]2 -3.253 9 F7 Cross-in-Tray [-10, 10]2 -2.062 61 F8 Holder Table [-10, 10]2 -19.208 5 F9 Drop-Wave [-5.12, 5.12]2 -1 F10 Levy [-10, 10]2 0 F11 Bridge [-10, 10]2 -3.005 4 F12 Shubert [-50, 50]2 -186.730 9 F13 Rastrigin [-20, 20]4 0 F14 Ackley [-32, 32]30 0 F15 Griewank [-600, 600]40 0 F16 Vincent [0.25, 10]50 -50 表 3 16个标准测试函数优化结果对比
Table 3. Comparison of optimization results of 16 standard test functions
函数代号 FPA CS 最优值 平均值 标准差 最优值 平均值 标准差 F1 2.82 5.42 1.63 9.85×10-7 2.37×10-3 5.49×10-4 F2 -106.764 5 -106.762 7 2.24×10-3 -106.764 5 -106.757 0 1.64×10-3 F3 -0.999 8 -0.997 0 1.88×10-3 -0.999 7 -0.994 5 1.21×10-3 F4 6.46×10-5 2.46×10-2 3.49×10-2 2.56×10-1 1.81 3.97×10-1 F5 2.09×10-6 2.41×10-3 5.07×10-3 1.88×10-3 0.53 1.24×10-1 F6 -3.253 9 -3.253 7 3.20×10-4 -3.253 9 -3.253 3 1.29×10-4 F7 -2.062 6 -2.062 3 7.46×10-5 -2.062 6 -2.062 5 2.11×10-5 F8 -19.208 5 -19.208 3 1.73×10-4 -19.208 5 -19.208 2 7.18×10-5 F9 -0.993 3 -0.947 3 1.77×10-2 -0.986 5 -0.936 2 1.77×10-2 F10 1.24×10-5 2.93×10-2 3.70×10-2 4.06×10-6 5.60×10-3 1.40×10-3 F11 -3.004 1 -2.877 1 8.56×10-2 -2.928 0 -2.651 2 7.64×10-2 F12 -186.730 7 -186.712 5 2.68×10-2 -186.730 8 -186.709 8 6.13×10-3 F13 6.60 15.36 5.01 2.93 8.05 1.46 F14 3.87 6.34 1.17 4.66 8.35 0.92 F15 4.64 11.29 2.66 2.73 6.97 1.21 F16 -49.61 -49.22 0.16 -49.84 -49.74 9.33×10-2 F1 8.63×10-11 5.79×10-9 5.66×10-9 3.88×10-9 1.82×10-5 2.89×10-5 F2 -106.764 5 -104.939 3 5.23 -106.764 5 -106.764 5 4.76×10-6 F3 -1.000 0 -0.999 8 1.06×10-4 -1.000 0 -0.999 9 7.81×10-5 F4 6.70×10-7 4.88×10-4 8.66×10-4 8.32×10-9 5.00×10-5 3.94×10-5 F5 8.34×10-8 3.59×10-6 5.29×10-6 5.15×10-9 1.88×10-7 1.70×10-7 F6 -3.253 9 -3.253 1 8.20×10-4 -3.253 9 -3.253 9 5.93×10-6 F7 -2.062 6 -2.062 6 1.77×10-4 -2.062 6 -2.062 6 1.30×10-8 F8 -19.208 5 -19.207 9 9.73×10-4 -19.208 5 -19.208 5 4.50×10-10 F9 -1.000 0 -0.994 9 1.75×10-2 -1.000 0 -0.999 9 1.99×10-4 F10 4.68×10-9 1.41×10-7 2.10×10-7 1.26×10-10 6.79×10-9 7.70×10-9 F11 -3.005 4 -2.933 6 0.20 -3.005 4 -3.005 1 3.18×10-4 F12 -186.730 9 -177.764 8 13.30 -186.730 9 -186.730 8 5.50×10-4 F13 2.38×10-6 1.33 1.41 0 1.18×10-7 7.42×10-7 F14 1.80×10-3 3.83×10-3 1.12×10-3 6.46×10-12 1.62×10-7 1.09×10-6 F15 3.00×10-4 7.47×10-2 0.19 2.97×10-4 1.32×10-3 7.53×10-4 F16 -49.87 -9.62 9.83×10-2 -50.00 -49.99 2.51×10-4 表 4 不同p0、γ参数下的NS-FPA寻优结果
Table 4. Optimization results of NS-FPA with different p0 and γ
p0 平均值 标准差 γ 平均值 标准差 0.1 -0.998 08 9.20×10-3 0.1 -0.996 70 1.28×10-2 0.2 -0.998 44 9.19×10-3 0.2 -0.999 11 4.04×10-3 0.3 -0.998 61 8.57×10-3 0.3 -0.999 15 3.27×10-3 0.4 -0.999 14 4.14×10-3 0.4 -0.999 65 1.40×10-3 0.5 -0.999 35 2.73×10-3 0.5 -0.999 72 1.21×10-3 0.6 -0.999 81 9.14×10-4 0.6 -0.999 78 1.14×10-3 0.7 -0.999 99 6.52×10-5 0.7 -0.999 83 9.39×10-4 0.8 -0.999 93 9.59×10-5 0.8 -0.999 98 7.47×10-5 0.9 -0.999 86 7.12×10-4 0.9 -0.999 89 6.15×10-4 表 5 NS-FPA与FPA的平均消耗时间对比
Table 5. Comparison of mean consumption time between NS-FPA and FPA
函数代号 平均耗时/s NS-FPA与FPA平均
耗时的百分比NS-FPA FPA F5 0.28 0.20 142.56 F6 0.28 0.20 142.76 F11 0.31 0.22 137.15 F13 0.28 0.22 126.89 F14 33.56 27.22 123.31 F15 34.99 28.63 122.24 -
[1] YANG X S. Flower pollination algorithm for global optimization[C]//International Conference on Unconventional Computation and Natural Computation. Berlin: Springer, 2012: 240-249. [2] YANG X S, KARAMANOGLU M, HE X.Multi-objective flower algorithm for optimization[J].Procedia Computer Science, 2014, 18(1):861-868. https://www.sciencedirect.com/science/article/pii/S1877050913003943 [3] YANG X S, KARAMANOGLU M, HE X.Flower pollination algorithm:A novel approach for multiobjective optimization[J].Engineering Optimization, 2014, 46(9):194-195. http://eprints.mdx.ac.uk/19520/1/Engineering_Optimization_final.pdf [4] AL-MA'SHUMAH F, PERMANA D, SIDARTO K A.Solving inverse problem for Markov chain model of customer lifetime value using flower pollination algorithm[J].Journal of Molecular Structure, 2015, 1692(1):7-11. http://adsabs.harvard.edu/abs/2015AIPC.1692b0015A [5] PRATHIBA R, MOSES M B, SAKTHIVEL S.Flower pollination algorithm applied for different economic load dispatch problems[J].International Journal of Engineering & Technology, 2014, 6(2):1009-1016. http://www.enggjournals.com/ijet//docs/IJET14-06-02-243.pdf [6] DUBEY H M, PANDIT M, PANIGRAHI B K.Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch[J].Renewable Energy, 2015, 83:188-202. doi: 10.1016/j.renene.2015.04.034 [7] ABDELAZIZ A Y, ALI E S, ELAZIM S M A.Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems[J].Energy, 2016, 101:506-518. doi: 10.1016/j.energy.2016.02.041 [8] SHARAWI M, EMARY E, IMANE A, et al.Flower pollination optimization algorithm for wireless sensor network lifetime global optimization[J].Applied Soft Computing, 2014, 4(3):2231-2307. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.458.7082 [9] EMARY E, ZAWBAA H M, HASSANIEN A E, et al.Retinal vessel segmentation based on flower pollination search algorithm[M].Berlin:Springer, 2014:93-100. [10] WANG R, ZHOU Y Q.Flower pollination algorithm with dimension by dimension improvement[J].Mathematical Problems in Engineering, 2014, 2014:481791. https://www.hindawi.com/journals/mpe/2014/481791/alg2/ [11] ABDEL-RAOUF O, ABDEL-BASET M, EL-HENAWY I.An improved flower pollination algorithm with chaos[J].International Journal of Education & Management Engineering, 2014, 4(2):1-8. https://www.researchgate.net/profile/Ibrahim_Henawy/publication/267632439_An_Improved_Flower_Pollination_Algorithm_with_Chaos/links/5630f31e08ae13bc6c354b46.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [12] ABDEL-RAOUF O, EL-HENAWY I, ABDEL-BASET M.A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles[J].International Journal of Engineering Trends & Technology, 2014, 6(3):126-132. http://www.mecs-press.org/ijmecs/ijmecs-v6-n3/IJMECS-V6-N3-5.pdf [13] EL-HENAWY I, ISMAIL M.An improved chaotic flower pollination algorithm for solving large integer programming problems[J].International Journal of Digital Content Technology & Its Applic, 2014, 8(3):72-79. http://www.ijcat.com/archives/volume4/issue3/ijcatr04031006.pdf [14] ABDEL-RAOUF O, ABDEL-BASET M, EL-HENAWY I.A new hybrid flower pollination algorithm for solving constrained global optimization problems[J].International Journal of Applied Operational Research, 2014, 3(2):21-28. http://ijorlu.liau.ac.ir/article-1-335-en.html [15] ŁUKASIK S, KOWALSKI P A.Study of flower pollination algorithm for continuous optimization[M].Berlin:Springer, 2015:451-459. [16] 傅文渊, 凌朝东.布朗运动模拟退火算法[J].计算机学报, 2014, 37(6):1301-1308. http://www.cnki.com.cn/Article/CJFDTotal-JSJX201406008.htmFU W Y, LING C D.Brownian motion based simulated annealing algorithm[J].Chinese Journal of Computers, 2014, 37(6):1301-1308(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JSJX201406008.htm [17] NELDER J A, MEAD R A.A simplex method for function minimization[J].The Computer Journal, 1965, 7(4):308-313. doi: 10.1093/comjnl/7.4.308 [18] NAZARETH L, TSENG P.Gilding the lily:A variant of the Nelder-Mead algorithm based on golden-section search[J].Computational Optimization & Applications, 2002, 22(1):133-144. doi: 10.1023/A:1014842520519.pdf [19] YANG X S.Nature-inspired optimization algorithms[M].Beckington:Luniver Press, 2014:67-75. [20] YANG X S, DEB S.Cuckoo search:Recent advances and applications[J].Neural Computing and Applications, 2014, 24(1):169-174. doi: 10.1007/s00521-013-1367-1 [21] YANG X S, HE X.Firefly algorithm:Recent advances and applications[J].International Journal of Swarm Intelligence, 2013, 1(1):36-50. doi: 10.1504/IJSI.2013.055801 [22] KAIPA K N, GHOSE D.Glowworm swarm optimization:Theory, algorithms, and applications[M].Berlin:Springer, 2017:91-131.