留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双模式驱动的飞行汽车起飞阶段动力匹配分析

徐斌 田富刚

徐斌, 田富刚. 基于双模式驱动的飞行汽车起飞阶段动力匹配分析[J]. 北京航空航天大学学报, 2018, 44(4): 662-669. doi: 10.13700/j.bh.1001-5965.2017.0279
引用本文: 徐斌, 田富刚. 基于双模式驱动的飞行汽车起飞阶段动力匹配分析[J]. 北京航空航天大学学报, 2018, 44(4): 662-669. doi: 10.13700/j.bh.1001-5965.2017.0279
XU Bin, TIAN Fugang. Power matching of flying cars during takeoff stage based on dual-mode driving[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 662-669. doi: 10.13700/j.bh.1001-5965.2017.0279(in Chinese)
Citation: XU Bin, TIAN Fugang. Power matching of flying cars during takeoff stage based on dual-mode driving[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 662-669. doi: 10.13700/j.bh.1001-5965.2017.0279(in Chinese)

基于双模式驱动的飞行汽车起飞阶段动力匹配分析

doi: 10.13700/j.bh.1001-5965.2017.0279
详细信息
    作者简介:

    徐斌  男, 硕士, 教授。主要研究方向:发动机涡轮增压及控制技术

    田富刚  男, 硕士研究生。主要研究方向:飞行汽车概念设计及动力匹配

    通讯作者:

    徐斌, E-mail: xbacb@buaa.edu.cn

  • 中图分类号: U469.79

Power matching of flying cars during takeoff stage based on dual-mode driving

More Information
  • 摘要:

    针对折叠翼飞行汽车起飞阶段的动力匹配问题,研究了基本的动力控制策略,通过理论计算分析了起飞阶段双模式驱动特性,提出了最佳切换时刻的概念。对某型飞行汽车传动系统进行了动力匹配计算,并以该飞行汽车参数为基础,在Simulink中建立了不同工况下的行驶仿真模型,对起飞阶段行驶状态进行了仿真分析,给出了基于双模式驱动的动力匹配方案以及最佳切换时刻的选取原则。计算结果表明,通过采取双模式驱动,起飞加速时间缩短22%,起飞滑跑距离缩短13%。进一步对传动系统参数、整车设计参数以及发动机输出特性进行了优化分析,分析计算结果给出了各参数变化对起飞动力性能的影响。

     

  • 图 1  飞行汽车起飞阶段受力示意图[6-7]

    Figure 1.  Force diagram of flying car during takeoff stage[6-7]

    图 2  发动机外特性曲线

    Figure 2.  External characteristic curves of engine

    图 3  起飞阶段轮胎驱动力与对应发动机转速下螺旋桨驱动力

    Figure 3.  Wheel driving force and propeller driving force under the same engine speed during takeoff stage

    图 4  起飞过程加速曲线

    Figure 4.  Accelerating curves during takeoff stage

    图 5  传动比对起飞滑跑距离的影响

    Figure 5.  Influence of transmission ratio on takeoff running distance

    图 6  换挡转速对加速时间和起飞滑跑距离的影响

    Figure 6.  Influence of shifting speed on acceleration time and takeoff running distance

    图 7  整车质量对加速时间和起飞滑跑距离的影响

    Figure 7.  Influence of vehicle quality on acceleration time and takeoff running distance

    图 8  滚动阻力和迎风阻力与车速的关系

    Figure 8.  Relationship between wheel and windward resistance and vehicle speed

    图 9  阻力系数对加速时间和起飞滑跑距离的影响

    Figure 9.  Influence of drag coefficient on acceleration time and takeoff running distance

    图 10  不同发动机转矩特性曲线

    Figure 10.  Different engine torque characteristic curves

    图 11  发动机适应性系数对切换时间和总加速时间的影响

    Figure 11.  Influence of engine adaptability coefficient on switching time and take-off acceleration time

    图 12  发动机适应性系数对切换时刻行驶距离和总起飞滑跑距离的影响

    Figure 12.  Influence of engine adaptability coefficient on running distance at switching time and running distance of take-off stage

    表  1  飞行汽车基本参数

    Table  1.   Main parameters of flying car

    参数 数值
    载荷W/N 6500
    起飞速度/(km·h-1) 110
    升阻比K 10
    迎风面积A/m2 2
    车轮半径r/m 0.52
    螺旋桨传动比i 2.43
    螺旋桨直径D/m 1.8
    机翼投影面积Al/m2 9
    下载: 导出CSV

    表  2  双模式驱动与纯螺旋桨驱动结果对比

    Table  2.   Comparison of results of dual-mode driving and pure propeller driving

    驱动方式 加速时间/s 起飞滑跑距离/m
    纯螺旋桨驱动 16.87 276
    双模式驱动 13.15 240
    优化率/% 22.05 13.04
    下载: 导出CSV
  • [1] 李根, 马铁林, 林海英, 等. 飞行汽车研究进展及技术难点[C]//探索创新交流: 中国航空学会青年科技论坛文集: 第7集. 北京: 航空工业出版社, 2016: 133-139.

    LI G, MA T L, LIN H Y, et al. Research development and technical difficulties of flying car[C]//Exploration, Innovation, Exchange: Essays on the Youth Science and Technology Forum of China Aviation Society: Seventh. Beijing: Aeronautical Industry Press, 2016: 133-139(in Chinese).
    [2] RAJASHEKARA K, WANG Q, MATSUSE K.Flying cars:Cha-llenges and propulsion strategies[J]. IEEE Electrification Magazine, 2016, 4(1):46-57. doi: 10.1109/MELE.2015.2509901
    [3] 朱保利, 程磊, 吴恢鹏.飞行汽车概念设计与气动特性分析[J].机械工程师, 2014(5):87-89. http://www.doc88.com/p-7734452080571.html

    ZHU B L, CHENG L, WU H P.Conceptualdesign and aerodynamic characteristics analysis of flying car based on CFD[J]. Mechanical Engineer, 2014(5):87-89(in Chinese). http://www.doc88.com/p-7734452080571.html
    [4] 王拖连, 杨世文, 薛姣, 等.陆空两用飞行汽车发展现状与展望[J].公路与汽运, 2011(4):12-16. http://d.wanfangdata.com.cn/Periodical_glyqy201104004.aspx

    WANG T L, YANG S W, XUE J, et al.The development status and prospect of airphibian flying car[J]. Highway and Automotive Applications, 2011(4):12-16(in Chinese). http://d.wanfangdata.com.cn/Periodical_glyqy201104004.aspx
    [5] 刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社, 2006.

    LIU P Q.Air propeller theory and its application[M]. Beijing:Beihang University Press, 2006(in Chinese).
    [6] 邹晓敏, 刘刚.车辆道路行驶阻力的模拟及测量[J].质量与认证, 2012(12):58-61. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rezjs201212024

    ZOU X M, LIU G.Simulation and measurement of driving resistance of vehicle road[J]. China Quality Certification, 2012(12):58-61(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rezjs201212024
    [7] 李晓甫, 赵克刚, 黄向东, 等.汽车行驶阻力模型参数的确定[J].汽车工程, 2011, 33(8):645-648. http://www.docin.com/p-742637435.html

    LI X F, ZHAO K G, HUANG X D, et al.Determination of parameters in vehicle driving resistance model[J]. Automotive Engineering, 2011, 33(8):645-648(in Chinese). http://www.docin.com/p-742637435.html
    [8] 张杰, 吴森堂.一种变体飞行器的动力学建模与动态特性分析[J].北京航空航天大学学报, 2015, 41(1):58-64. http://bhxb.buaa.edu.cn/CN/abstract/abstract13125.shtml

    ZHANG J, WU S T.Dynamic modeling for a morphing aircraft and dynamic characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 4(1):58-64(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13125.shtml
    [9] 林学东.汽车动力匹配技术[M].北京:中国水利水电出版社, 2010.

    LIN X D.Vehicle power matching technology[M]. Beijing:China Water and Power Press, 2010(in Chinese).
    [10] 杨连生.内燃机性能及其与传动装置的优化匹配[M].北京:学术期刊出版社, 1988.

    YANG L S.Performance of internal combustion engine and its optimal matching with transmission[M]. Beijing:Academic Periodical Press, 1988(in Chinese).
    [11] 曲建清, 宋辉.无人机总体与起飞性能匹配性设计优化[J].飞行力学, 2013, 31(3):225-229.

    QU J Q, SONG H.Design optimization of UAV configuration and takeoff performance[J]. Flight Dynamics, 2013, 31(3):225-229(in Chinese).
    [12] ZHOU M, ZHAO L, ZHANG Y, et al.Pure electric vehicle power-train parameters matching based on vehicle performance[J]. International Journal of Control & Automation, 2015, 8(9):53-62.
    [13] ZHANG L, HAO G, YANG X, et al.The electric vehicle power design and the matching characteristics analysis of the transmi-ssion system[J]. Telkomnika Indonesian Journal of Electrical Engineering, 2013, 11(11):6352-6357.
    [14] 吴大卫, 李寒冰, 李书, 等.基于仿真模型的短距起飞性能优化[J].北京航空航天大学学报, 2014, 40(6):756-761. http://bhxb.buaa.edu.cn/CN/abstract/abstract12944.shtml

    WU D W, LI H B, LI S, et al.Short takeoff performance optimization based on simulation model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6):756-761(in Cinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12944.shtml
    [15] 张威, 张景海, 隗海林, 等.汽车动力学仿真模型的发展[J].汽车技术, 2003(2):1-4. https://www.wenkuxiazai.com/doc/d289d75077232f60ddcca1e7.html

    ZHANG W, ZHANG J H, HUAI H L, et al.Development of vehicle dynamic simulation model[J]. Automobile Technology, 2003(2):1-4(in Chinese). https://www.wenkuxiazai.com/doc/d289d75077232f60ddcca1e7.html
    [16] 冯超. 基于Matlab/Simulink的电动汽车仿真模型设计与应用[D]. 北京: 中国科学院大学, 2013.

    FENG C. The simulation model design and application of the electric vehicle based on Matlab/Simulink[D]. Beijing: University of Chinese Academy of Sciences, 2013(in Chinese).
    [17] 张雪文, 徐明亮, 杨欣.汽油发动机的动力特性分析[J].机械制造与自动化, 2012, 41(1):47-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxzzyzdh201201017

    ZHANG X W, XU M L, YANG X.Dynamic characteristics of gasoline engines[J]. Machine Building Automation, 2012, 41(1):47-49(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxzzyzdh201201017
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  179
  • PDF下载量:  653
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-05
  • 录用日期:  2017-06-30
  • 网络出版日期:  2018-04-20

目录

    /

    返回文章
    返回
    常见问答