-
摘要:
卫星信号捕获是接收机内基带信号处理的关键步骤,捕获的速度严重影响接收机首次定位的时间(TTFF)。在基于快速傅里叶变换(FFT)的并行码相位捕获(PCPS)方法基础上,将具有亚线性运算量的稀疏傅里叶变换(SFT)引入捕获过程中,提出了基于SFT的快速捕获方法,通过优化捕获过程中相关运算的效率,提高捕获速度。仿真结果表明,与传统的基于FFT的捕获方法相比,基于SFT的快速捕获方法运算效率提高到原来的2倍,更好地满足了卫星信号对快速捕获的要求。
-
关键词:
- 卫星信号 /
- 快速捕获 /
- 稀疏傅里叶变换(SFT) /
- 混叠 /
- 降采样
Abstract:The acquisition of the satellite signals is the key step of baseband signal processing in the receiver. The speed of the acquisition has a serious effect on the time to first fix (TTFF).According to the parallel code phase search (PCPS) method based on fast Fourier transform (FFT), the sparse Fourier transform (SFT) which computes in sub-sampled time is applied to the PCPS algorithm to simplify the acquisition process. The fast acquisition method based on SFT is proposed. The faster acquisition is achieved by optimizing the efficiency of correlation operation. The simulation results show that the computation time of the proposed fast acquisition method based on SFT is 2 times faster than that of the conventional FFT-based acquisition method. And it can better meet the requirements of fast satellite signal acquisition.
-
Key words:
- satellite signal /
- fast acquisition /
- sparse Fourier transform (SFT) /
- aliasing /
- sub-sampling
-
表 1 卫星捕获实验结果(T=1ms)
Table 1. Satellite acquisition experimental results(T=1ms)
p值 伪码相位/(104采样点) 多普勒频率/kHz 峰值/107 运算时间/s 1 3.4212 2.5 3.296 0.262481 2 1.5115 2.5 4.826 0.143569 4 0.5569 5.0 5.746 0.093134 表 2 卫星捕获实验结果(T=2ms)
Table 2. Satellite acquisition experimental results(T=2ms)
p值 码相位/(104采样点) 多普勒频率/kHz 峰值/107 运算时间/s 1 3.4213 2.5 6.810 0.475760 2 1.5117 2.5 9.224 0.235174 4 0.5568 4.5 9.288 0.116987 表 3 卫星捕获实验结果(T=5ms)
Table 3. Satellite acquisition experimental results(T=5ms)
p值 伪码相位/(104采样点) 多普勒频率/kHz 峰值/107 运算时间/s 1 3.4213 2.5 15.34 1.205674 2 1.5117 2.5 20.31 0.546816 4 0.5568 5.0 24.70 0.274991 -
[1] 鲁郁.北斗/GPS双模软件接收机原理与实现技术[M].北京:电子工业出版社, 2016:119-157.LU Y.BDS/GPS dual-mode software receiver principles and realizing[M]. Beijing:Publishing House of Electronics Industry, 2016:119-157(in Chinese). [2] 谢钢.GPS原理与接收机设计[M].北京:电子工业出版社, 2009:349-375.XIE G.Principles of GPS and receiver design[M]. Beijing:Publishing House of Electronics Industry, 2009:349-375(in Chinese). [3] COOLEY J W, TUKEY J W.An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90):297-301. doi: 10.1090/S0025-5718-1965-0178586-1 [4] RAO K R, KIM D N, HWANG J J.Fast Fourier transform-algorithms and applications[M]. Berlin:Springer, 2010:15-40. [5] AKOPIAN D.Fast FFT based GPS satellite acquisition methods[J]. IEE Proceedings:Radar Sonar and Navigation, 2005, 152(4):277-286. doi: 10.1049/ip-rsn:20045096 [6] SPANGENBERG S M, SCOTT I, MCLAUGHLIN S, et al.An FFT-based approach for fast acquisition in spread spectrum communication systems[J]. Wireless Personal Communications, 2000, 13(1-2):27-55. doi: 10.1023/A:1008848916834.pdf [7] SAGIRAJU P K, RAJU G V S, AKOPIAN D.Fast acquisition implementation for high sensitivity global positioning systems receivers based on joint and reduced space search[J]. IEE Proceedings:Radar Sonar and Navigation, 2008, 2(5):376-387. doi: 10.1049/iet-rsn:20070147 [8] HASSANIEH H, INDYK P, KATABI D, et al. Nearly optimal sparse Fourier transform[C]//Proceedings of the 44th ACM Symposium on Theory of Computing. New York: ACM, 2012: 563-578. [9] 那美丽, 周志刚, 李霈霈.基于稀疏傅里叶变换的低采样率带宽频谱感知[J].电子技术应用, 2015, 41(11):85-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzjsyy201511025NA M L, ZHOU Z G, LI P P.Wideband spectrum sensing at low sampling rate based on the sparse Fourier transform[J]. Application of Electronic Technique, 2015, 41(11):85-88(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzjsyy201511025 [10] 王雄. 基于稀疏傅里叶变换的水声快速解调算法研究[D]. 北京: 北京理工大学, 2015: 39-42.WANG X. Fast demodulation algorithm of underwater acoustic based on the sparse Fourier transform[D]. Beijing: Beijing Institute of Technology, 2015: 39-42(in Chinese). [11] HASSANIEH H, INDYK P, KATABI D, et al. FASTER GPS via the sparse Fourier transform[C]//Proceedings of the 18th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2012: 353-364. [12] MA Y, BU X Y, HAN H C, et al. Combined algorithm of acquisition and anti-jamming based on SFT[J]. Journal of Systems Engineering and Electronics, 2015, 26(3):431-440. doi: 10.1109/JSEE.2015.00050 [13] 龚巧娴. 基于SFT的快速捕获与干扰抑制联合算法研究[D]. 北京: 北京理工大学, 2015: 20-32.GONG Q X. Research on combined algorithm of acquisition and anti-jamming based on SFT[D]. Beijing: Beijing Institute of Technology, 2015: 20-32(in Chinese). [14] RAO M V G, RATNAM D V.Faster acquisition technique for software-defined GPS receivers[J]. Defence Science Journal, 2015, 65(1):5-11. doi: 10.14429/dsj.65.5579 [15] PARKINSON B, SPILKER J. Global positioning system:Theory and applications[M]. Reston:AIAA, 1996:245-325. [16] BORRE K, AKOS D M, BERTELSEN N.A software-defined GPS and Galileo receiver[M]. Berlin:Springer, 2007:75-86.