留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于八叉树的简化构型三角片等值面削减算法

徐雷 王华锋 潘海侠 林广艳 陈栎曦

徐雷, 王华锋, 潘海侠, 等 . 基于八叉树的简化构型三角片等值面削减算法[J]. 北京航空航天大学学报, 2018, 44(4): 851-861. doi: 10.13700/j.bh.1001-5965.2017.0282
引用本文: 徐雷, 王华锋, 潘海侠, 等 . 基于八叉树的简化构型三角片等值面削减算法[J]. 北京航空航天大学学报, 2018, 44(4): 851-861. doi: 10.13700/j.bh.1001-5965.2017.0282
XU Lei, WANG Huafeng, PAN Haixia, et al. Octree based decimation algorithm for triangle isosurface using simplified patterns[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 851-861. doi: 10.13700/j.bh.1001-5965.2017.0282(in Chinese)
Citation: XU Lei, WANG Huafeng, PAN Haixia, et al. Octree based decimation algorithm for triangle isosurface using simplified patterns[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 851-861. doi: 10.13700/j.bh.1001-5965.2017.0282(in Chinese)

基于八叉树的简化构型三角片等值面削减算法

doi: 10.13700/j.bh.1001-5965.2017.0282
详细信息
    作者简介:

    徐雷  男, 硕士研究生。主要研究方向:模式识别、机器学习

    王华锋  男, 博士, 副教授, 硕士生导师。主要研究方向:图像处理、模式识别、机器学习

    通讯作者:

    王华锋, E-mail: wanghuafeng@buaa.edu.cn

  • 中图分类号: TP391

Octree based decimation algorithm for triangle isosurface using simplified patterns

More Information
  • 摘要:

    采用简化构型的SMC算法相比标准MC算法能够有效减少构成等值面的三角片的数量,但因为其仅是在体元内部的简化,所以不能较好地利用数据集表面局部形态特征。针对这一问题进一步提出OSMC算法。其根据简化构型的特点,首先采用八叉树结构组织体元,然后采用自底向上的合并策略合并节点,最后实现局部区域三角片合并。实验证明:OSMC算法能够实现比SMC算法更多的三角片削减,尤其对于具有较多平坦区域的数据集效果显著,其对公开数据集数据的平均削减率为55.1%,而SMC算法为29.7%,在面对高分辨率的地质数据时其最高削减率达到了80%,平均也超过了50%,同时OSMC算法能够更好地适应数据集分辨率的增长。

     

  • 图 1  MC算法构型

    Figure 1.  MC algorithm configuration

    图 2  SMC算法构型

    Figure 2.  SMC algorithm configuration

    图 3  OSMC算法流程

    Figure 3.  Flowchart of OSMC algorithm

    图 4  超体元提取三角片

    Figure 4.  Triangle extraction for super cell

    图 5  3种算法对Engine数据产生的表面全视图

    Figure 5.  Isosurface full view of three algorithms on Engine data set

    图 6  细节表面图

    Figure 6.  Detailed surface

    图 7  表面三角片构成情况

    Figure 7.  Composition of surface triangle

    图 8  3种算法人体肺部结节数据产生的网格和表面全视图

    Figure 8.  Mesh and isosurface full view of three algorithms on human pulmonary nodule data set

    图 9  3种算法人体肺部结节CT数据结果表面细节三角片构成情况

    Figure 9.  Triangles mesh part view of three algorithms on CT human pulmonary nodule data set

    图 10  3种算法对地质体数据产生的表面全视图

    Figure 10.  Isosurface full view of three algorithms on geological data set

    图 11  地质体数据集上平滑部分的三角片构成情况

    Figure 11.  Triangle mesh of flat area of geological data set

    图 12  地质体数据集上非平滑部分的三角片构成情况

    Figure 12.  Triangle mesh of uneven area of geological data set

    图 13  Table数据增长曲线

    Figure 13.  Table data growth curves

    图 14  四面体数据增长曲线

    Figure 14.  Tetrahedral data growth curves

    体元顶点与边

    Number of vertices and edges of cell

    表  1  平面方程类型

    Table  1.   Types of plane equation

    构型 三角片类型 平面方程类型
    正三角形 x+y+z=c
    x+y-z=c
    x-y-z=c
    x-y+z=c
    一般直角三角形 x+y=c
    x-y=c
    y+z=c
    y-z=c
    x+z=c
    x-z=c
    等腰直角三角形 x=c
    y=c
    z=c
    下载: 导出CSV

    表  2  部分数据集结果三角片数及削减率的对比

    Table  2.   Comparison between result of triangles numbers and reduction rate of part data set

    数据集 三角片数 削减率/%
    MC算法 SMC算法 OSMC算法 OSMC较SMC算法 OSMC较MC算法
    Engine 622764 432370 259479 -40.0 -58.3
    Fan 508928 370256 179179 -51.6 -64.8
    Table 475548 439692 90073 -79.5 -81.1
    Teapot 745152 508798 304008 -40.2 -59.2
    Bonsai 644340 435994 372986 -14.5 -42.1
    Skull 1842404 1114208 1033229 -7.3 -43.9
    Backpack 3985836 2876044 2066527 -28.1 -48.2
    Phantom 7457316 5296868 3557633 -32.8 -52.3
    Lobster 1245556 721914 632738 -12.4 -49.2
    下载: 导出CSV

    表  3  人体肺部结节数据结果三角片数及削减率的对比

    Table  3.   Comparison between result of triangle numbers and reduction rate of human pulmonary nodules data set

    数据集 三角片数 削减率/%
    MC算法 SMC算法 OSMC算法 OSMC较SMC算法 OSMC较MC算法
    肺部结节1 11652 7524 6498 -13.64 -44.23
    肺部结节2 1992 1366 1160 -15.08 -41.77
    肺部结节3 3704 2564 2012 -21.53 -45.68
    肺部结节4 17360 10744 9198 -14.39 -47.02
    肺部结节5 16212 10098 8623 -14.61 -46.81
    肺部结节6 25052 16258 13583 -16.45 -45.78
    肺部结节7 44344 25638 24213 -5.56 -45.40
    肺部结节8 19972 11714 11350 -3.11 -43.17
    总计 -10.80 -45.37
    下载: 导出CSV

    表  4  地质体数据结果三角片数及削减率的对比

    Table  4.   Comparison between result of triangle numbers and reduction rate of geological data set

    数据集 三角片数 削减率/%
    MC算法 SMC算法 OSMC算法 OSMC较SMC算法 OSMC较MC算法
    地质体1 4216160 3068372 1569472 -48.85 -62.77
    地质体2 3570748 3044366 1123834 -63.09 -68.53
    地质体3 3998268 3018910 1068565 -64.60 -73.27
    地质体4 7187412 5691550 1902811 -66.57 -73.53
    地质体5 2374620 1788710 764733 -57.28 -67.80
    地质体6 3348048 2714290 639024 -76.46 -80.91
    地质体7 33408 26202 14492 -44.70 -56.62
    总计 -63.40 -71.35
    下载: 导出CSV

    表  5  Table数据集4种分辨率下实验结果

    Table  5.   Results under four resolutions for Table data set

    分辨率/(像素×像素×像素) MC算法 SMC算法 OSMC算法
    三角片数 与1倍分辨率比值 三角片数 与1倍分辨率比值 三角片数 与1倍分辨率比值
    197×70×101 111652 1.00 103056 1.00 7028 1.00
    394×140×203 475548 4.26 439692 4.27 10196 3.49
    591×210×304 1045120 9.36 955408 9.27 17464 5.84
    788×280×406 1920724 17.20 1786762 17.34 25334 10.33
    下载: 导出CSV

    表  6  四面体数据集4种分辨率下实验结果

    Table  6.   Experimental results under four resolutions for tetrahedral data set

    分辨率/(像素×像素×像素) MC算法 SMC算法 OSMC算法
    三角片数 与1倍分辨率比值 三角片数 与1倍分辨率比值 三角片数 与1倍分辨率比值
    100×100×100 55868 1.00 37438 1.00 7028 1.00
    200×200×200 224648 4.02 150152 4.01 10196 1.45
    300×300×300 513332 9.19 343384 9.17 17464 2.48
    400×400×400 914936 16.38 610738 16.31 25334 3.60
    下载: 导出CSV
  • [1] LORENSEN W E, CLINE H E. Marching cubes: A high resolution 3D surface construction algorithm[C]//ACM Siggraph Computer Graphics. New York: ACM, 1987, 21(4): 163-169.
    [2] HEIMBACH I, RHIEM F, BEULE F, et al.pyMolDyn:Identification, structure, and properties of cavities/vacancies in condensed matter and molecules[J].Journal of Computational Chemistry, 2017, 38(6):389-394. doi: 10.1002/jcc.24697
    [3] YIM P J, VASBINDER G B C, HO V B, et al.Isosurfaces as deformable models for magnetic resonance angiography[J].IEEE Transactions on Medical Imaging, 2003, 22(7):875-881. doi: 10.1109/TMI.2003.815056
    [4] BRONSON J R, SASTRY S P, LEVINE J A, et al.Adaptive and unstructured mesh cleaving[J].Procedia Engineering, 2014, 82:266-278. doi: 10.1016/j.proeng.2014.10.389
    [5] FERLEY E, CANI M P, GASCUEL J D.Practical volumetric sculpting[J].The Visual Computer, 2000, 16(8):469-480. doi: 10.1007/PL00007216
    [6] STEIN R, SHIH A M, BAKER M P, et al. Scientific visualization of water quality in the Chesapeake bay[C]//IEEE Visualization Conference. Piscataway, NJ: IEEE Press, 2000: 509-512.
    [7] TREMBILSKI A.Two methods for cloud visualisation from weather simulation data[J].The Visual Computer, 2001, 17(3):179-184. doi: 10.1007/PL00013405
    [8] KIM K, WITTENBRINK C M, PANG A. Data level comparison of surface classification and gradient filters[C]//Volume Graphics 2001. Berlin: Springer, 2001: 19-34.
    [9] NIELSON G M, HAMANN B. The asymptotic decider: Resolving the ambiguity in marching cubes[C]//Proceedings of the 2nd Conference on Visualization'91. Piscataway, NJ: IEEE Press, 1991: 83-91.
    [10] RECK F, DACHSBACHER C, GROSSO R, et al. Realtime iso-surface extraction with graphics hardware[C]//Eurographics. Geneva: Eurographics, 2004: 1-4.
    [11] JOHANSSON G, CARR H. Accelerating marching cubes with graphics hardware[C]//Proceedings of the 2006 Conference of the Center for Advanced Studies on Collaborative Research. Armonk: IBM Corporation, 2006, 6: 39.
    [12] NEWMAN T S, YI H.A survey of the marching cubes algorithm[J].Computers & Graphics, 2006, 30(5):854-879. http://cn.bing.com/academic/profile?id=35d7de94390ab0a2b543fb539cacded5&encoded=0&v=paper_preview&mkt=zh-cn
    [13] SCHROEDER W J, ZARGE J A, LORENSEN W E. Decimation of triangle meshes[C]//ACM Siggraph Computer Graphics. New York: ACM, 1992, 26(2): 65-70.
    [14] GARLAND M, HECKBERT P S. Surface simplification using quadric error metrics[C]//Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley Publishing Co., 1997: 209-216.
    [15] MONTANI C, SCATENI R, SCOPIGNO R. Discretized marching cubes[C]//Proceedings of the Conference on Visualization'94. Piscataway, NJ: IEEE Press, 1994: 281-287.
    [16] MONTANI C, SCATENI R, SCOPIGNO R.Decreasing isosurface complexity via discrete fitting[J].Computer Aided Geometric Design, 2000, 17(3):207-232. http://dl.acm.org/citation.cfm?id=868953
    [17] SHU R, ZHOU C, KANKANHALLI M S.Adaptive marching cubes[J].The Visual Computer, 1995, 11(4):202-217. doi: 10.1007/BF01901516
    [18] SHEKHAR R, FAYYAD E, YAGEL R, et al. Octree-based decimation of marching cubes surfaces[C]//7th Annual IEEE Conference on Visualization. Piscataway, NJ: IEEE Press, 1996: 335-342.
    [19] OHTAKE Y, BELYAEV A, ALEXA M, et al. Multi-level partition of unity implicits[C]//ACM Siggraph 2005 Courses. New York: ACM, 2005: 173.
    [20] KAZHDAN M, HOPPE H.Screened poisson surface reconstruction[J].ACM Transactions on Graphics (TOG), 2013, 32(3):29. http://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version8.0
    [21] WILHELMS J, VAN GELDER A.Octrees for faster isosurface generation[J].ACM Transactions on Graphics (TOG), 1992, 11(3):201-227. doi: 10.1145/130881.130882
    [22] WESTERMANN R, KOBBELT L, ERTL T.Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces[J].The Visual Computer, 1999, 15(2):100-111. http://cn.bing.com/academic/profile?id=6e397049916ce26c3253dedc5cd0b83e&encoded=0&v=paper_preview&mkt=zh-cn
    [23] CUI S H, LIU J.Simplified patterns for extracting the isosurfaces of solid objects[J].Image and Vision Computing, 2008, 26(2):174-186. doi: 10.1016/j.imavis.2007.02.003
    [24] VIGNOLES G L, DONIAS M, MULAT C, et al.Simplified marching cubes:An efficient discretization scheme for simulations of deposition/ablation in complex media[J].Computational Materials Science, 2011, 50(3):893-902. doi: 10.1016/j.commatsci.2010.10.027
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  127
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-05
  • 录用日期:  2017-09-01
  • 网络出版日期:  2018-04-20

目录

    /

    返回文章
    返回
    常见问答