-
摘要:
采用基于密度泛函理论的第一性原理计算方法,研究了常用合金化元素与非金属元素在晶界(GB)的偏析及其相互作用。选取2种类型的晶界结构进行研究:密排的晶界和较疏松的晶界。溶解能计算表明,金属和非金属元素在∑5晶界上均有明显的偏析行为,而在∑3晶界上的偏析现象不明显。通过计算常用过渡族合金化元素与非金属杂质C、H、O、N、B在各自最稳定位置的相互作用能,发现Ru、Re、W和Ta对O有强烈的排斥作用,因此对晶界抗氧化有益处;Ta排斥H,有抗晶界氢脆的效果。通过对金属元素与非金属元素在晶界上相互作用的系统研究,为Ni合金的晶界工程提供有价值的参考。
Abstract:First-principles calculations based on density functional theory are used to study the segregation of metallic and nonmetallic elements as well as their interactions on the grain boundary (GB) of nickel. Two typical GBs are constructed:close-packed GB and quite open GB. According to the solution energy calculation, both the metallic and nonmetallic elements show strong segregation behavior on the ∑5 GB, while for the ∑3 GB, the segregation is not so significant. The interaction energies between the common transition alloying elements and nonmetallic elements C, H, O, N and B are calculated when they occupy the most energy-favorable positions. It is found that Ru, Re, W and Ta exhibit strong repulsion to O, indicating beneficial effects for the oxidation resistance behavior; Ta shows strong repulsive interaction to H, which should be helpful for the inhibition of the hydrogen-embrittlement. The present work is useful for the grain boundary engineering of Ni-based superalloy by systematically studying the interaction between metallic and nonmetallic elements at grain boundaries.
-
表 1 单个非金属原子占据Σ5晶界孔洞处不同位置的溶解能
Table 1. Solution energy of Σ5 grain boundary containing one nonmetallic atom at different sites on hollow of GB planeeV
eV Σ5晶界间隙位置 EHsol ECsol EOsol ENsol EBsol 1 -1.693 0.747 -1.165 -1.146 -0.899 2 -1.691 0.583 -0.880 -1.683 -0.898 3 -1.736 0.745 -1.539 -1.459 -0.899 4 -1.736 0.744 -0.968 -1.459 -0.899 5 -1.736 0.744 -1.541 -1.461 -0.900 6 -1.736 0.743 -1.541 -1.462 -0.900 表 2 间隙原子在晶界和块体处的溶解能差值
Table 2. Solution energy differences of interstitial atoms at grain boundary and bulkeV
eV 晶界 间隙 H C O N B ∑3 o 0.280 0.038 0.562 1.235 -0.012 t 0.008 0.067 0.078 0.073 0.070 ∑5 o -0.281 -1.519 -2.111 -0.650 -1.857 t -0.196 -0.474 -0.314 0.154 -0.394 -
[1] 黄乾尧, 李汉康.高温合金[M].北京:冶金工业出版社, 2000:3.HUANG Q Y, LI H K.Superalloys[M].Beijing:Metallurgical Industry Press, 2000:3(in Chinese). [2] 郭建亭.高温合金材料学[M].北京:科学出版社, 2008:4.GUO J T.Materials science and engineering for superalloys[M].Beijing:Science Press, 2008:4(in Chinese). [3] VISKARI L H, RNQVIST M, MOORE K L, et al.Intergranularcrack tip oxidation in a Ni-base superalloy[J].Acta Materialia, 2013, 61(10):3630-3639. doi: 10.1016/j.actamat.2013.02.050 [4] ALEXANDROV V, SUSHKO M L, SCHREIBER D K, et al.Ab initio modeling of bulk and intragranular diffusion in Ni alloys[J].Journal of Physical Chemistry Letters, 2015, 6(9):1618-1623. doi: 10.1021/acs.jpclett.5b00177 [5] BECHTLE S, KUMAR M, SOMERDAY B P, et al.Grain-boun-dary engineering markedly reduces susceptibility to intergra-nular hydrogen embrittlement in metallic materials[J].Acta Materialia, 2009, 57(14):4148-4157. doi: 10.1016/j.actamat.2009.05.012 [6] ANGELO J E, MOODY N R, BASKES M I.Trapping of hydrogen to lattice defects in nickel[J].Modelling & Simulation in Materials Science & Engineering, 1995, 3(3):289-307. http://cn.bing.com/academic/profile?id=7e072c63c428d681961ae085d5b54f6b&encoded=0&v=paper_preview&mkt=zh-cn [7] DINGREVILLE R, BERBENNI S.On the interaction of solutes with grain boundaries[J].Acta Materialia, 2016, 104:237-49. doi: 10.1016/j.actamat.2015.11.017 [8] 刘文冠. 基于第一性原理的镍基合金晶界脆化机理的理论研究[D]: 北京: 中国科学院大学, 2014: 37.LIU W G. First-principles study of intergranular embrittlement in Ni-based alloy[D]: Beijing: University of Chinese Academy of Sciences, 2014: 37(in Chinese). [9] SINGH N, TALAPATRA A, JUNKAEW A, et al.Effect of ternary additions to structural properties of NiTi alloys[J].Computational Materials Science, 2016, 112:347-355. doi: 10.1016/j.commatsci.2015.10.029 [10] AI C, LI S, LIANG Y, et al.Influence of Mo and Ta additions on solidification behavior of Ni3Al single crystal alloys[J].Progress in Natural Science:Materials International, 2015, 25(4):353-360. doi: 10.1016/j.pnsc.2015.07.001 [11] ZHAO W, SUN Z, GONG S.Synergistic effect of co-alloying elements on site preferences and elastic properties of Ni3Al:A first-principles study[J].Intermetallics, 2015, 65:75-80. doi: 10.1016/j.intermet.2015.06.006 [12] 周自强.晶界研究的现状和发展[J].北京航空航天大学学报, 1989, 3(3):117-124. http://www.cqvip.com/QK/90359X/198901/6425.htmlZHOU Z Q.Recent progress and development on grain boundary research[J].Journal of Beijing University of Aeronautics and Astronautics, 1989, 3(3):117-124(in Chinese). http://www.cqvip.com/QK/90359X/198901/6425.html [13] BAGOT P A J, SILK O B W, DOUGLAS J O, et al.An atom probe tomography study of site preference and partitioning in a nickel-based superalloy[J].Acta Materialia, 2017, 125:156-165. doi: 10.1016/j.actamat.2016.11.053 [14] RAZUMOVSKIY V I, LOZOVOI A Y, RAZUMOVSKⅡ I M.First-principles-aided design of a new Ni-base superalloy:Influence of transition metal alloying elements on grain boundary and bulk cohesion[J].Acta Materialia, 2015, 82:369-377. doi: 10.1016/j.actamat.2014.08.047 [15] VŠIANSKÁ M, ŠOB M.The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and emb-rittlement in nickel[J].Progress in Materials Science, 2011, 56(6):817-840. doi: 10.1016/j.pmatsci.2011.01.008 [16] STEFANO D D, MROVEC M, ELSÄSSER C.First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel[J].Acta Materialia, 2015, 98:306-312. doi: 10.1016/j.actamat.2015.07.031 [17] ZHANG S, KONTSEVOI O Y, FREEMAN A J, et al.First pric-iples investigation of zinc-induced embrittlement in an alumi-num grain boundary[J].Acta Materialia, 2011, 59(15):6155-6167. doi: 10.1016/j.actamat.2011.06.028 [18] KRESSE G, FURTHMVLLER J.Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science, 1996, 6(1):15-50. doi: 10.1016/0927-0256(96)00008-0 [19] ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters, 1996, 77(18):3865. doi: 10.1103/PhysRevLett.77.3865 [20] PERDEW J P, CHEVARY J, VOSKO S, et al.Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J].Physical Review B, 1992, 46(11):6671. doi: 10.1103/PhysRevB.46.6671 [21] LIU W, HAN H, REN C, et al.Effects of rare-earth on the coh-esion of Ni ∑5(012) grain boundary from first-principles ca-lculations[J].Computational Materials Science, 2015, 96:374-378. doi: 10.1016/j.commatsci.2014.09.035 [22] XIA S, ZHOU B X, CHEN W J, et al.Effects of strain and annealing processes on the distribution of ∑3 boundaries in a Ni-based superalloy[J].Scripta Materialia, 2006, 54(12):2019-2022. doi: 10.1016/j.scriptamat.2006.03.014 [23] OGAWA H.GBstudio:A builder software on periodic models of CSL boundaries for molecular simulation[J].Materials Transactions, 2006, 47(11):2706-2710. doi: 10.2320/matertrans.47.2706 [24] 祝令刚. Ti和Nb合金中氧化问题的理论研究[D]. 沈阳: 中国科学院金属研究所, 2013: 84.ZHU L G. Theoretical study on the oxidation of Ti and Nb-based alloys[D]. Shenyang: Insititute of Metal Research, Chinese Academy of Sciences, 2013: 84(in Chinese). [25] ALAM T, FELFER P J, CHATURVEDI M, et al.Segregation of B, P, and C in the Ni-based superalloy, inconel 718[J].Metallurgical and Materials Transactions A, 2012, 43(7):2183-2191. doi: 10.1007/s11661-012-1085-9