留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半监督集成学习的多核设计空间探索

李丹丹 姚淑珍 王颖 王森章 谭火彬

李丹丹, 姚淑珍, 王颖, 等 . 基于半监督集成学习的多核设计空间探索[J]. 北京航空航天大学学报, 2018, 44(4): 792-801. doi: 10.13700/j.bh.1001-5965.2017.0297
引用本文: 李丹丹, 姚淑珍, 王颖, 等 . 基于半监督集成学习的多核设计空间探索[J]. 北京航空航天大学学报, 2018, 44(4): 792-801. doi: 10.13700/j.bh.1001-5965.2017.0297
LI Dandan, YAO Shuzhen, WANG Ying, et al. Multicore design space exploration via semi-supervised ensemble learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 792-801. doi: 10.13700/j.bh.1001-5965.2017.0297(in Chinese)
Citation: LI Dandan, YAO Shuzhen, WANG Ying, et al. Multicore design space exploration via semi-supervised ensemble learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 792-801. doi: 10.13700/j.bh.1001-5965.2017.0297(in Chinese)

基于半监督集成学习的多核设计空间探索

doi: 10.13700/j.bh.1001-5965.2017.0297
基金项目: 

航空科学基金 2013ZC51023

详细信息
    作者简介:

    李丹丹  女, 博士研究生。主要研究方向:处理器设计、机器学习、软件工程技术

    姚淑珍  女, 博士, 教授, 博士生导师。主要研究方向:先进软件工程技术、形式化方法、Petri网理论

    王颖  男, 博士, 讲师。主要研究方向:存储系统、节能加速器、容错体系结构

    王森章  男, 博士, 副研究员。主要研究方向:数据挖掘、社交网络分析、大数据

    谭火彬  男, 博士, 讲师。主要研究方向:软件工程、软件建模

    通讯作者:

    姚淑珍, E-mail: szyao@buaa.edu.cn

  • 中图分类号: TP302

Multicore design space exploration via semi-supervised ensemble learning

Funds: 

Aeronautical Science Foundation of China 2013ZC51023

More Information
  • 摘要:

    随着处理器的系统结构日趋复杂,设计空间呈指数式增长,并且软件模拟技术极为费时,成为处理器设计的重要挑战。提出了一种结合集成学习和半监督学习技术的高效设计空间探索方法。具体而言,该方法包括2个阶段:使用均匀随机采样方法从处理器设计空间中选择一小组具有代表性的设计点,通过模拟获得性能响应,从而组成训练数据集;提出基于半监督学习的AdaBoost(SSLBoost)模型预测未模拟的样本配置的响应,从而搜索最优的处理器设计配置。实验结果表明,与现有的基于人工神经网络和支持向量机(SVM)的有监督预测模型相比,SSLBoost模型能够使用更少的模拟样本构建出不差于现有方法性能的预测模型;而当模拟样本数量相同时,SSLBoost模型的预测精度更高。

     

  • 图 1  基于半监督集成学习的设计空间探索框架

    Figure 1.  Design space exploration framework based on semi-supervised ensemble learning

    图 2  基于半监督学习的AdaBoost模型流程图

    Figure 2.  Flowchart of AdaBoost model based on semi-supervised learning

    图 3  在多核设计场景下不同方法的预测精度对比

    Figure 3.  Prediction accuracy comparsion of different methods in multicore design scenarios

    图 4  多核设计场景下SSLBoost模型关于不同数量的训练迭代次数的预测精度

    Figure 4.  Prediction accuracy of SSLBoost model with respect to different numbers of training iterations in multicore design scenarios

    表  1  多核设计空间

    Table  1.   Multicore design space

    设计参数 设计参数取值 数量
    Band Width/(GB·s-1) 8~64:8+ 8
    Frequency/GHz 1~4.5: 0.5+ 8
    Issue Width 1, 2, 4, 8 4
    Number of Cores 1, 2, 4, 8 4
    L2 Cache Size/MB 2, 4, 8, 16 4
    L2 Cache Block Size/B 16, 32, 64, 128 4
    L2 Cache Associativity 2, 4, 8, 16 4
    L2 Cache MSHR 32~256:2* 4
    L1 Dcache/KB 16, 32, 64, 128 4
    L1 ICache/KB 16, 32, 64, 128 4
    下载: 导出CSV

    表  2  为达到SSLBoost模型相同的预测精度,ANN和SVM所需要的模拟配置(训练样本)数量

    Table  2.   Numbers of simulated configurations (training examples) required by ANN and SVM to achieve the same level of prediction accuracy as SSLBoost model

    基准程序 配置数量
    ANN SVM
    blackscholes 360 500+
    bodytrack 350 300
    canneal 320 500+
    dedup 370 270
    facesim 440 500+
    ferret 310 480
    fluidanimate 430 500+
    freqmine 470 500+
    streamcluster 400 500+
    vips 370 500+
    平均 382 455+
    下载: 导出CSV

    表  3  各种模型预测的最优配置对比(vips)

    Table  3.   Predicted optimal configurations of different models(vips)

    设计参数及性能 SSLBoost模型 ANN SVM
    Band Width/(GB·s-1) 64 8 40
    Frequency/GHz 4.5 4.5 4
    Issue/Fetch/Commit Width 4 2 4
    Number of Cores 1 1 2
    L2 Cache Size/MB 4 2 2
    L2 Cache Block Size/B 64 128 64
    L2 Cache Associativity 8 2 2
    L2 Cache MSHR 128 64 128
    L1 Dcache/KB 128 128 64
    L1 ICache/KB 64 16 16
    真实模拟性能/ms 11.52 11.78 13.68
    预测性能/ms 11.12 10.27 10.42
    预测误差/% 3.5 12.9 23.8
    下载: 导出CSV
  • [1] NOONBURG D B, SHEN J P. Theoretical modeling of superscalar processor performance[C]//Proceeding of International Symposium on Microarchitecture. New York: ACM, 1994: 52-62.
    [2] KARKHANIS T S, SMITH J E. Automated design of application specific superscalar processors: An analytical approach[C]//Proceedings of the 34th International Symposium on Computer Architecture. New York: ACM, 2007: 402-411.
    [3] HAMERLY G, PERELMAN E, CALDER B.How to use SimPoint to pick simulation points[J].ACM Sigmetrics Performance Evaluation Review, 2004, 31(4):25-30. doi: 10.1145/1054907
    [4] WUNDERLICH R E, WENISCH T F, FALSAFI B, et al. SMARTS: Accelerating microarchitecture simulation via rigorous statistical sampling[C]//Proceedings of the 30th Annual International Symposium on Computer Architecture. New York: ACM, 2003: 84-97.
    [5] WANG S, HU X, YU P S, et al. MMRate: Inferring multi-aspect diffusion networks with multi-pattern cascades[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 1246-1255.
    [6] WANG S, LI Z, CHAO W, et al. Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning[C]//International Symposium on Neural Networks. Piscataway, NJ: IEEE Press, 2012: 1-8.
    [7] JOSEPH P J, VASWANI K, THAZHUTHAVEETIL M J. Construction and use of linear regression models for processor performance analysis[C]//Proceedings of the 12th International Symposium on High-Performance Computer Architecture. Piscataway, NJ: IEEE Press, 2006: 99-108.
    [8] JOSEPH P J, VASWANI K, THAZHUTHAVEETIL M J. A predictive performance model for superscalar processors[C]//Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture. Piscataway, NJ: IEEE Press, 2006: 161-170.
    [9] LEE B C, BROOKS D M. Accurate and efficient regression modeling for microarchitectural performance and power prediction[C]//Proceedings of 12th International Conference on Architectural Support for Programming Language and Operating Systems. New York: ACM, 2006: 185-194.
    [10] LEE B C, COLLINS J, WANG H, et al. CPR: Composable performance regression for scalable multiprocessor models[C]//Proceedings of the 41 st Annual IEEE/ACM International Symposium on Microarchitecture. Piscataway, NJ: IEEE Press, 2008: 270-281.
    [11] ÏPEK E, MCKEE S A, CARUANA R, et al. Efficiently exploring architectural design spaces via predictive modeling[C]//Proceedings of 12th International Conference on Architectural Support for Programming Language and Operating Systems. New York: ACM, 2006: 195-206.
    [12] 郭崎, 陈天石, 陈云霁.基于模型树的多核设计空间探索技术[J].计算机辅助设计与图形学学报, 2012, 24(6):710-720. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201206001.htm

    GUO Q, CHEN T S, CHEN Y J.Model tree based multi-core design space exploration[J].Journal of Computer-Aided Design & Computer Graphics, 2012, 24(6):710-720(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201206001.htm
    [13] PANG J F, LI X F, XIE J S, et al.Microarchitectural design space exploration via support vector machine[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(1):55-63. https://www.researchgate.net/publication/290771725_Microarchitectural_design_space_exploration_via_support_vector_machine
    [14] PALERMO G, SILVANO C, ZACCARIA V.ReSPIR:A response surface-based Pareto iterative refinement for application-specific design space exploration[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(12):1816-1829. doi: 10.1109/TCAD.2009.2028681
    [15] XYDIS S, PALERMO G, ZACCARIA V, et al.SPIRIT:Spectral-aware Pareto iterative refinement optimization for supervised high-level synthesis[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(1):155-159. doi: 10.1109/TCAD.2014.2363392
    [16] GUO Q, CHEN T, ZHOU Z H, et al.Robust design space modeling[J].ACM Transactions on Design Automation of Electronic Systems, 2015:20(2):18. http://pages.saclay.inria.fr/olivier.temam/files/eval/todaes.pdf
    [17] LI D, YAO S, LIU Y H, et al. Efficient design space exploration via statistical sampling and AdaBoost learning[C]//Design Automation Conference. New York: ACM, 2016: 1-6.
    [18] KHAN S, XEKALAKIS P, CAVAZOS J, et al. Using predictivemodeling for cross-program design space exploration in multicore systems[C]//Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques. Piscataway, NJ: IEEE Press, 2007: 327-338.
    [19] DUBACH C, JONES T, OBOYLE M. Microarchitectural design space exploration using an architecture-centric approach[C]//Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture. Piscataway, NJ: IEEE Press, 2007: 262-271.
    [20] LI D, WANG S, YAO S, et al. Efficient design space exploration by knowledge transfer[C]//Eleventh IEEE/ACM/IFIP International Conference on Hardware/software Codesign and System Synthesis. New York: ACM, 2016: 1-10.
    [21] SHRESTHA D L, SOLOMATINE D P.Experiments with AdaBoost.RT, an improved boosting scheme for regression[J].Neural Computation, 2006, 18(7):1678-1710. doi: 10.1162/neco.2006.18.7.1678
    [22] ZHOU Z H, LI M.Semi-supervised learning by disagreement[J].Knowledge and Information Systems, 2010, 24(3):415-439. doi: 10.1007/s10115-009-0209-z
    [23] BINKERT N, BECKMANN B, BLACK G, et al.The gem5 simulator[J].ACM SIGARCH Computer Architecture News, 2011, 39(2):1-7. doi: 10.1145/2024716
    [24] BIENIA C, KUMAR S, SINGH J P, et al. The PARSEC benchmark suite: Characterization and architectural implications[C]//Proceedings of the 17th International Conference on Parallel Architecture and Compilation Techniques. New York: ACM, 2008: 72-81.
    [25] HAMED V, RONG J, ANIL K. Semi-supervised boosting for multi-class classification[C]//European Conference on Principles of Data Mining and Knowledge Discovery, 2008: 522-537.
    [26] ZHOU Z H, LI M. Semi-supervised regression with co-training[C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence. New York: ACM, 2005: 908-913.
    [27] CHANG C C, LIN C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):27-1-27-27. https://www.csie.ntu.edu.tw/~cjlin/libsvm
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  898
  • HTML全文浏览量:  161
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-11
  • 录用日期:  2017-06-16
  • 网络出版日期:  2018-04-20

目录

    /

    返回文章
    返回
    常见问答