留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

来流导致的高超声速气动热不确定度量化分析

张伟 王小永 于剑 阎超

张伟, 王小永, 于剑, 等 . 来流导致的高超声速气动热不确定度量化分析[J]. 北京航空航天大学学报, 2018, 44(5): 1102-1109. doi: 10.13700/j.bh.1001-5965.2017.0303
引用本文: 张伟, 王小永, 于剑, 等 . 来流导致的高超声速气动热不确定度量化分析[J]. 北京航空航天大学学报, 2018, 44(5): 1102-1109. doi: 10.13700/j.bh.1001-5965.2017.0303
ZHANG Wei, WANG Xiaoyong, YU Jian, et al. Uncertainty quantification analysis in hypersonic aerothermodynamics due to freestream[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1102-1109. doi: 10.13700/j.bh.1001-5965.2017.0303(in Chinese)
Citation: ZHANG Wei, WANG Xiaoyong, YU Jian, et al. Uncertainty quantification analysis in hypersonic aerothermodynamics due to freestream[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1102-1109. doi: 10.13700/j.bh.1001-5965.2017.0303(in Chinese)

来流导致的高超声速气动热不确定度量化分析

doi: 10.13700/j.bh.1001-5965.2017.0303
详细信息
    作者简介:

    张伟  男, 硕士研究生。主要研究方向:计算流体力学及飞行器设计

    阎超  男, 博士, 教授, 博士生导师。主要研究方向:计算流体力学

    通讯作者:

    阎超, E-mail: yanchao@buaa.edu.cn

  • 中图分类号: V211.3

Uncertainty quantification analysis in hypersonic aerothermodynamics due to freestream

More Information
  • 摘要:

    通常的CFD计算都是确定性的,然而复杂工程数值模拟中必然存在误差与不确定度,分析与辨识其不确定度来源,对不确定度进行量化分析,对数值模拟可信度评估有重要意义。在高超声速飞行器气动热计算中,为获得更加可靠的气动热数据和鉴定影响气动热预测的关键因素,对返回舱开展了气动热不确定度量化分析和敏感性分析。首先选取来流速度、来流温度、壁面温度和来流密度4个不确定性输入变量,并且假定来流速度变化范围为±120 m/s(±2%),来流温度、壁面温度和来流密度变化范围为±10%。然后采用拉丁超立方抽样法生成样本,再通过热化学非平衡数值模拟方法进行气动热计算,最后分别运用基于非嵌入式多项式混沌(NIPC)的方法和基于Sobol指数的方法开展不确定度量化和敏感性分析。结果表明,在给定的输入变量不确定度的条件下,壁面热流不确定度不小于15.9%,在驻点和肩部存在峰值分别约为19.8%(0.087 MW/m2)和17.3%(0.076 MW/m2);相比而言,在给定变化范围内壁面热流对来流密度和来流速度更为敏感,来流温度和壁面温度对热流变化不产生明显影响。

     

  • 图 1  不确定度分析方法流程

    Figure 1.  Flowchart of uncertainty analysis method

    图 2  ELECTRE标模几何与网格示意图

    Figure 2.  Schematic of geometry and computational mesh of ELECTRE vehicle

    图 3  ELECTRE标模壁面热流分布

    Figure 3.  Heat flux distribution on wall surface of ELECTRE vehicle

    图 4  ELECTRE标模驻点线温度分布

    Figure 4.  Temperature distribution along stagnation line of ELECTRE vehicle

    图 5  Apollo返回舱几何与网格示意图

    Figure 5.  Schematic of geometry and computational mesh of Apollo returning capsule

    图 6  不同网格水平下壁面热流对比

    Figure 6.  Wall heat flux comparison under different grid levels

    图 7  基准状态平动温度与压力分布

    Figure 7.  Translational temperature and pressure contours for baseline case

    图 8  Apollo返回舱驻点线温度分布

    Figure 8.  Temperature distribution along stagnation line of Apollo returning capsule

    图 9  壁面热流对比

    Figure 9.  Wall heat flux comparison

    图 10  壁面热流不确定度和输入变量Sobol指数分布

    Figure 10.  Uncertainty of wall heat flux and Sobol index distribution of input variable

    图 11  驻点和肩部各输入变量对总体不确定度的相对贡献

    Figure 11.  Relative importance of each input variable on overall uncertainty at stagnation and shoulder

    表  1  基准状态流动条件

    Table  1.   Flow condition of baseline state

    参数 高度/km u/
    (m·s-1)
    T/K ρ/
    (kg·m-3)
    YN/YO
    数值 67.3 6 040 225 9.8×10-5 0.77/0.23
    下载: 导出CSV

    表  2  输入变量不确定度

    Table  2.   Uncertainties of input variable

    参数 不确定度
    u ±120 m/s(±2%)
    T ±10%
    Tw ±10%
    ρ ±10%
    下载: 导出CSV

    表  3  不确定度量化结果

    Table  3.   Results of uncertainty quantification

    量化结果 驻点SR=0 肩部SR=1 817 mm
    平均值μR/(MW·m-2) 0.220 1 0.223 0
    标准差σR/(MW·m-2) 0.022 3 0.019 5
    2-σ区间 (0.176 4,0.263 8) (0.184 8,0.261 2)
    不确定度/% 19.8 17.3
    下载: 导出CSV

    表  4  驻点和肩部各输入变量Sobol指数

    Table  4.   Sobol index of each input variable at stagnation and shoulder

    Sobol指数 驻点SR=0 肩部SR=1 817 mm
    u 0.286 7 0.268 1
    T 0.032 5 0.000 3
    Tw 0.031 2 0.003 4
    ρ 0.758 0 0.729 5
    下载: 导出CSV
  • [1] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社:2006:2-6.

    YAN C.Computational fluid dynamic's methods and applications[M].Beijing:Beihang University Press, 2006:2-6(in Chinese).
    [2] BETTIS B, HOSDER S. Uncertainty quantification in hypersonic reentry flows due to aleatory and epistemic uncertainties[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
    [3] BRUNE A J, WEST T K, HOSDER S, et al. A review of uncertainty analysis for hypersonic inflatable aerodynamic decelerator design[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: 2373.
    [4] CHAMPION K S W.Middle atmosphere density data and comparison with models[J].Advances in Space Research, 1990, 10(6):17-26. doi: 10.1016/0273-1177(90)90232-O
    [5] ECKHARDT R.Stan Ulam, John Von Neumann, and the Monte Carlo method[J].Los Alamos Science Special Issue, 1987(15Special):131-137. https://fas.org/sgp/othergov/doe/lanl/pubs/00326867.pdf
    [6] ZAREMBA S K.The mathematical basis of Monte Carlo and quasi-Monte Carlo methods[J].SIAM Review, 1968, 10(3):303-314. doi: 10.1137/1010056
    [7] HOSDER S, WALTERS R, PEREZ R. A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 891.
    [8] HOSDER S, WALTERS R, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables[C]//Non-Deterministic Approaches Conference. Reston: AIAA, 2007: 1939.
    [9] LOEVEN A, BIJL H. Airfoil analysis with uncertain geometry using the probabilistic collocation method[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2008: 2070.
    [10] WEAVER A B, ALEXEENKO A. Flowfield uncertainty analysis for hypersonic CFD simulations[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010: 1180.
    [11] 周禹. 高超声速热化学非平衡流场数值模拟研究[D]. 北京: 北京航空航天大学, 2009: 13-19.

    ZHOU Y. Numerical simulation of hypersonic thermal and chemical nonequilibrium flows[D]. Beijing: Beihang University, 2009: 13-19(in Chinese).
    [12] WANG X, YAN C, ZHENG W L, et al.Laminar and turbulent heating predictions for mars entry vehicles[J].Acta Astronautica, 2016, 128:217-228. doi: 10.1016/j.actaastro.2016.07.030
    [13] 熊芬芬, 杨树兴, 刘宇, 等.工程概率不确定性分析方法[M].北京:科学出版社, 2015:115-117.

    XIONG F F, YANG S X, LIU Y, et al.Engineering probability uncertainty analysis method[M].Beijing:Science Press, 2015:115-117(in Chinese).
    [14] SOBOL I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J].Mathematics & Computers in Simulation, 2001, 55(1-3):271-280. http://dl.acm.org/citation.cfm?id=373383
    [15] MUYLAERT J, WALPOT L, HAUSER J. Standard model testing in the European high enthalpy facility F4 and extrapolation to flight[C]//Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992: S396.
    [16] HAO J A, WANG J Y, LI C H.Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J].Acta Astronautica, 2016, 126:1-10. doi: 10.1016/j.actaastro.2016.04.014
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  848
  • HTML全文浏览量:  123
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-12
  • 录用日期:  2017-08-11
  • 网络出版日期:  2018-05-20

目录

    /

    返回文章
    返回
    常见问答