Uncertainty quantification analysis in hypersonic aerothermodynamics due to freestream
-
摘要:
通常的CFD计算都是确定性的,然而复杂工程数值模拟中必然存在误差与不确定度,分析与辨识其不确定度来源,对不确定度进行量化分析,对数值模拟可信度评估有重要意义。在高超声速飞行器气动热计算中,为获得更加可靠的气动热数据和鉴定影响气动热预测的关键因素,对返回舱开展了气动热不确定度量化分析和敏感性分析。首先选取来流速度、来流温度、壁面温度和来流密度4个不确定性输入变量,并且假定来流速度变化范围为±120 m/s(±2%),来流温度、壁面温度和来流密度变化范围为±10%。然后采用拉丁超立方抽样法生成样本,再通过热化学非平衡数值模拟方法进行气动热计算,最后分别运用基于非嵌入式多项式混沌(NIPC)的方法和基于Sobol指数的方法开展不确定度量化和敏感性分析。结果表明,在给定的输入变量不确定度的条件下,壁面热流不确定度不小于15.9%,在驻点和肩部存在峰值分别约为19.8%(0.087 MW/m2)和17.3%(0.076 MW/m2);相比而言,在给定变化范围内壁面热流对来流密度和来流速度更为敏感,来流温度和壁面温度对热流变化不产生明显影响。
Abstract:The CFD calculation is usually deterministic. However, errors and uncertainties always exist in the numerical simulation of complex engineering. Analysis and identification of source of uncertainty, and quantification of uncertainty play important roles in assessing the credibility of simulation results. Uncertainties are generally ubiquitous in highly complex aerospace systems. To obtain more reliable aerothermodynamics prediction, the uncertainty quantification and sensitivity analysis were carried out for the returning capsule hypersonic reentry flight. First, four uncertainty input variables (freestream velocity, freestream temperature, wall temperature and freestream density) were selected, whose variation ranges are ±120 m/s (±2%), ±10%, ±10% and ±10% respectively. And the samples were generated by Latin hypercube Design. Then, the thermochemical non-equilibrium numerical simulation method was used to calculate the aerodynamic heat. Finally, methods based on non-intrusive polynomial chaos(NIPC) and Sobol index were applied to uncertainty quantification and sensitivity analysis. The results show that the wall heat flux is not less than 15.9% under the given condition of uncertainty input variable uncertainty, and the peak value of the stagnation and shoulder are about 19.8% (0.087 MW/m2) and 17.3% (0.076 MW/m2) respectively. The uncertainty of heat flux is more sensitive to freestream density and velocity, and meanwhile freestream temperature and wall temperature variations almost have no impact on heat flux.
-
表 1 基准状态流动条件
Table 1. Flow condition of baseline state
参数 高度/km u∞/
(m·s-1)T∞/K ρ∞/
(kg·m-3)YN/YO 数值 67.3 6 040 225 9.8×10-5 0.77/0.23 表 2 输入变量不确定度
Table 2. Uncertainties of input variable
参数 不确定度 u∞ ±120 m/s(±2%) T∞ ±10% Tw ±10% ρ∞ ±10% 表 3 不确定度量化结果
Table 3. Results of uncertainty quantification
量化结果 驻点SR=0 肩部SR=1 817 mm 平均值μR/(MW·m-2) 0.220 1 0.223 0 标准差σR/(MW·m-2) 0.022 3 0.019 5 2-σ区间 (0.176 4,0.263 8) (0.184 8,0.261 2) 不确定度/% 19.8 17.3 表 4 驻点和肩部各输入变量Sobol指数
Table 4. Sobol index of each input variable at stagnation and shoulder
Sobol指数 驻点SR=0 肩部SR=1 817 mm u∞ 0.286 7 0.268 1 T∞ 0.032 5 0.000 3 Tw 0.031 2 0.003 4 ρ∞ 0.758 0 0.729 5 -
[1] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社:2006:2-6.YAN C.Computational fluid dynamic's methods and applications[M].Beijing:Beihang University Press, 2006:2-6(in Chinese). [2] BETTIS B, HOSDER S. Uncertainty quantification in hypersonic reentry flows due to aleatory and epistemic uncertainties[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. [3] BRUNE A J, WEST T K, HOSDER S, et al. A review of uncertainty analysis for hypersonic inflatable aerodynamic decelerator design[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: 2373. [4] CHAMPION K S W.Middle atmosphere density data and comparison with models[J].Advances in Space Research, 1990, 10(6):17-26. doi: 10.1016/0273-1177(90)90232-O [5] ECKHARDT R.Stan Ulam, John Von Neumann, and the Monte Carlo method[J].Los Alamos Science Special Issue, 1987(15Special):131-137. https://fas.org/sgp/othergov/doe/lanl/pubs/00326867.pdf [6] ZAREMBA S K.The mathematical basis of Monte Carlo and quasi-Monte Carlo methods[J].SIAM Review, 1968, 10(3):303-314. doi: 10.1137/1010056 [7] HOSDER S, WALTERS R, PEREZ R. A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 891. [8] HOSDER S, WALTERS R, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables[C]//Non-Deterministic Approaches Conference. Reston: AIAA, 2007: 1939. [9] LOEVEN A, BIJL H. Airfoil analysis with uncertain geometry using the probabilistic collocation method[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2008: 2070. [10] WEAVER A B, ALEXEENKO A. Flowfield uncertainty analysis for hypersonic CFD simulations[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010: 1180. [11] 周禹. 高超声速热化学非平衡流场数值模拟研究[D]. 北京: 北京航空航天大学, 2009: 13-19.ZHOU Y. Numerical simulation of hypersonic thermal and chemical nonequilibrium flows[D]. Beijing: Beihang University, 2009: 13-19(in Chinese). [12] WANG X, YAN C, ZHENG W L, et al.Laminar and turbulent heating predictions for mars entry vehicles[J].Acta Astronautica, 2016, 128:217-228. doi: 10.1016/j.actaastro.2016.07.030 [13] 熊芬芬, 杨树兴, 刘宇, 等.工程概率不确定性分析方法[M].北京:科学出版社, 2015:115-117.XIONG F F, YANG S X, LIU Y, et al.Engineering probability uncertainty analysis method[M].Beijing:Science Press, 2015:115-117(in Chinese). [14] SOBOL I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J].Mathematics & Computers in Simulation, 2001, 55(1-3):271-280. http://dl.acm.org/citation.cfm?id=373383 [15] MUYLAERT J, WALPOT L, HAUSER J. Standard model testing in the European high enthalpy facility F4 and extrapolation to flight[C]//Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992: S396. [16] HAO J A, WANG J Y, LI C H.Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J].Acta Astronautica, 2016, 126:1-10. doi: 10.1016/j.actaastro.2016.04.014