留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硒掺杂锗碲相变存储材料的第一性原理研究

方治乾 缪奶华 周健

方治乾, 缪奶华, 周健等 . 硒掺杂锗碲相变存储材料的第一性原理研究[J]. 北京航空航天大学学报, 2018, 44(5): 1066-1073. doi: 10.13700/j.bh.1001-5965.2017.0332
引用本文: 方治乾, 缪奶华, 周健等 . 硒掺杂锗碲相变存储材料的第一性原理研究[J]. 北京航空航天大学学报, 2018, 44(5): 1066-1073. doi: 10.13700/j.bh.1001-5965.2017.0332
FANG Zhiqian, MIAO Naihua, ZHOU Jianet al. First-principles study of Se doped GeTe phase-change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1066-1073. doi: 10.13700/j.bh.1001-5965.2017.0332(in Chinese)
Citation: FANG Zhiqian, MIAO Naihua, ZHOU Jianet al. First-principles study of Se doped GeTe phase-change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1066-1073. doi: 10.13700/j.bh.1001-5965.2017.0332(in Chinese)

硒掺杂锗碲相变存储材料的第一性原理研究

doi: 10.13700/j.bh.1001-5965.2017.0332
基金项目: 

国家自然科学基金 61274005

详细信息
    作者简介:

    方治乾  男, 硕士研究生。主要研究方向:相变存储材料

    缪奶华  男, 博士, 副教授, 硕士生导师。主要研究方向:计算材料学、相变存储材料、热电材料

    周健  男, 博士, 副教授, 硕士生导师。主要研究方向:计算材料学、相变存储材料、热电材料

    通讯作者:

    周健, E-mail: jzhou@buaa.edu.cn

  • 中图分类号: TB34;O474

First-principles study of Se doped GeTe phase-change material

Funds: 

National Natural Science Foundation of China 61274005

More Information
  • 摘要:

    硒(Se)掺杂可以大幅提高锗碲(GeTe)相变存储材料的再结晶温度,使其具有更高的服役温度和更好的数据保持力,然而Se掺杂对GeTe微观结构和电学性质的影响机制尚不清楚。采用第一性原理计算方法,对Se掺杂GeTe相变存储材料的几何构型、成键性质和电子性质进行了理论研究。结果表明,对于GeTe完美晶体,掺杂的Se原子优先取代Te原子。而对含本征Ge空位的GeTe体系,Se倾向于取代与Ge空位最近邻的Te原子。Se原子与Ge空位具有吸引作用,抑制了Ge空位的移动,从而提高其再结晶温度。Se掺杂导致含Ge空位的菱方相体积收缩,带隙减小,而使含Ge空位的面心立方相体积膨胀,带隙增大。Se掺杂减小了GeTe两晶相的体积差异。计算结果为解释实验中Se掺杂导致的奇特相变性质提供了重要线索。

     

  • 图 1  GeTe晶体结构

    Figure 1.  Crystalline structure of GeTe

    图 2  完美GeTe晶体掺杂前后在(100)面上的ELF截面图(等高线间隔为0.14)

    Figure 2.  ELF contour plots on (100) plane for Se doped ideal GeTe crystal (interval is 0.14)

    图 3  Se掺杂Ge31Te32菱方相和Ge31Te32面心立方相的形成能随Se原子与Ge空位之间距离的变化

    Figure 3.  Formation energy of Se doping in rhombohedral Ge31Te32 and fcc Ge31Te32 versus distance between doped Se atom and Ge vacancy

    图 4  Se掺杂GeTe的2种构型

    Figure 4.  Two configurations of Se doped GeTe

    图 5  Se掺杂含Ge空位的GeTe体系的在(100)面上的ELF截面图(等高线间隔为0.12)

    Figure 5.  ELF contour plots on (100) plane for Se doped GeTe systems with intrinsic Ge vacancy (interval is 0.12)

    图 6  菱方相和面心立方相总态密度

    Figure 6.  Total density of states for rhombohedral phase and fcc

    图 7  菱方相Ge32Te31Se1和面心立方相Ge32Te31Se1 Ge原子、Te原子和Se原子的分波态密度

    Figure 7.  Partial density of states for Ge atom, Te atom and Se atom in rhombohedral Ge32Te31Se1 and fcc Ge32Te31Se1

    表  1  计算得到的单胞晶格数据

    Table  1.   Calculated crystal lattice datas of single cell

    结构 a0/nm α/(°) V/nm3 Eg/eV
    菱方相GeTe 0.608 6 88.14 0.225 05 0.62
    菱方相Ge32Te31Se1 0.608 3 87.94 0.224 62 0.58
    菱方相Ge31Te31Se1 0.605 8 87.77 0.221 88 0.58
    菱方相Ge31Te32 0.606 2 87.82 0.222 34 0.59
    菱方相Ge31Se1Te32 0.608 4 88.12 0.224 86
    面心立方相GeTe 0.601 9 90 0.218 08 0.38
    面心立方相Ge32Te31Se1 0.600 3 90 0.216 34 0.40
    面心立方相Ge31Te31Se1 0.602 4 90 0.218 52 0.52
    面心立方相Ge31Te32 0.599 4 90 0.215 37 0.31
    面心立方相Ge31Se1Te32 0.601 0 90 0.217 04
      注:晶格常数a0、晶胞角度α、惯用胞体积V以及带隙Eg
    下载: 导出CSV

    表  2  Se掺杂完美GeTe不同取代位置的形成能

    Table  2.   Formation energy of Se doping at different substitution positions in ideal GeTe eV

    eV
    Se掺杂 菱方相 面心立方相
    富Ge 富Te 富Ge 富Te
    取代Ge 1.05 0.88 0.67 0.50
    取代Te -0.41 -0.24 -0.54 -0.37
    下载: 导出CSV
  • [1] OVSHINSKY S R.Reversible electrical switching phenomena in disordered structures[J].Physical Review Letters, 1968, 21(20):1450-1453. doi: 10.1103/PhysRevLett.21.1450
    [2] RAOUX S, WELNIC W, IELMINI D.Phase change materials and their application to nonvolatile memories[J].Chemical Reviews, 2010, 110(1):240-267. doi: 10.1021/cr900040x
    [3] WONG H S P, SALAHUDDIN S.Memory leads the way to better computing[J].Nature Nanotechnology, 2015, 10(3):191-194. doi: 10.1038/nnano.2015.29
    [4] LENCER D, SALINGA M, GRABOWSKI B, et al.A map for phase-change materials[J].Nature Materials, 2008, 7(12):972-977. doi: 10.1038/nmat2330
    [5] LENCER D, SALINGA M, WUTTIG M.Design rules for phase-change materials in data storage applications[J].Advanced Materials, 2011, 23(18):2030-2058. doi: 10.1002/adma.v23.18
    [6] RAOUX S.Phase change materials[J].Annual Review of Materials Research, 2009, 39(1):25-48. doi: 10.1146/annurev-matsci-082908-145405
    [7] PERNIOLA L, SOUSA V, FANTINI A, et al.Electrical behavior of phase-change memory cells based on GeTe[J].IEEE Electron Device Letters, 2010, 31(5):488-490. doi: 10.1109/LED.2010.2044136
    [8] BRUNS G, MERKELBACH P, SCHLOCKERMANN C, et al.Nanosecond switching in GeTe phase change memory cells[J].Applied Physics Letters, 2009, 95(4):043108. doi: 10.1063/1.3191670
    [9] CHONG T, SHI L, ZHAO R, et al.Phase change random access memory cell with superlattice-like structure[J].Applied Physics Letters, 2006, 88(12):122114. doi: 10.1063/1.2181191
    [10] VINOD E M, SINGH A K, GANESAN R, et al.Effect of selenium addition on the GeTe phase change memory alloys[J].Journal of Alloys and Compounds, 2012, 537(19):127-132. http://www.sciencedirect.com/science/article/pii/S0925838812008857
    [11] VINOD E M, SANGUNNI K S.The effect of Se doping on spectroscopic and electrical properties of GeTe[J].Thin Solid Films, 2014, 550(1):569-574. http://www.sciencedirect.com/science/article/pii/S0040609013018919
    [12] KOLOBOV A V, TOMINAGA J, FONS P, et al.Local structure of crystallized GeTe films[J].Applied Physics Letters, 2003, 82(3):382-384. doi: 10.1063/1.1539926
    [13] TONG F, MIAO X S, WU Y, et al.Effective method to identify the vacancies in crystalline GeTe[J].Applied Physics Letters, 2010, 97(26):261904. doi: 10.1063/1.3531664
    [14] VINOD E M, RAMESH K, SANGUNNI K S.Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys[J].Scientific Reports, 2015, 5:8050. doi: 10.1038/srep08050
    [15] WANG M, LU Y, SHEN X, et al.Effect of Sb2Se on phase change characteristics of Ge2Sb2Te5[J].CrystEngComm, 2015, 17(26):4871-4876. doi: 10.1039/C5CE00656B
    [16] HAFNER J.Ab-initio simulations of materials using VASP:Density-functional theory and beyond[J].Journal of Computational Chemistry, 2008, 29(13):2044-2078. doi: 10.1002/jcc.v29:13
    [17] BLÖCHL P E.Projector augmented-wave method[J].Physical Review B, 1994, 50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953
    [18] PERDEW J P, WANG Y.Pair-distribution function and its coupling-constant average for the spin-polarized electron gas[J].Physical Review B, 1992, 46(20):12947-12954. doi: 10.1103/PhysRevB.46.12947
    [19] MIAO N, SA B, ZHOU J, et al.Investigation on Ge5-xSbxTe5 phase-change materials by first-principles method[J].Applied Physics A, 2010, 99(4):961-964. doi: 10.1007/s00339-010-5709-x
    [20] GOLDAK J, BARRETT C S, INNES D, et al.Structure of alpha GeTe[J].The Journal of Chemical Physics, 1966, 44(9):3323-3325. doi: 10.1063/1.1727231
    [21] LEVIN E M, BESSER M F, HANUS R.Electronic and thermal transport in GeTe:A versatile base for thermoelectric materials[J].Journal of Applied Physics, 2013, 114(8):083713. doi: 10.1063/1.4819222
    [22] CHATTOPADHYAY T, BOUCHERLE J.Neutron diffraction study on the structural phase transition in GeTe[J].Journal of Physics C:Solid State Physics, 1987, 20(10):1431. doi: 10.1088/0022-3719/20/10/012
    [23] PEIERLS R E.Quantum theory of solids[M].Oxford:Oxford University Press, 1955.
    [24] SUN Z, TIAN S, SA B.Investigation of the structure and properties of rhombohedral Cu-Ge-Te alloys by ab initio calculations[J].Intermetallics, 2013, 32(2):292-296. http://www.sciencedirect.com/science/article/pii/S0966979512003172
    [25] ZHANG S, WEI S H, ZUNGER A, et al.Defect physics of the CuInSe2 chalcopyrite semiconductor[J].Physical Review B, 1998, 57(16):9642. doi: 10.1103/PhysRevB.57.9642
    [26] WEI S H.Overcoming the doping bottleneck in semiconductors[J].Computational Materials Science, 2004, 30(3):337-348. http://www.sciencedirect.com/science/article/pii/S092702560400117X
    [27] NAM S W, CHUNG H S, LO Y C, et al.Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires[J].Science, 2012, 336(6088):1561-1566. doi: 10.1126/science.1220119
    [28] NUKALA P, AGARWAL R, QIAN X, et al.Direct observation of metal-insulator transition in single-crystalline germanium telluride nanowire memory devices prior to amorphization[J].Nano Letters, 2014, 14(4):2201-2209. doi: 10.1021/nl5007036
    [29] SUN Z, ZHOU J, BLOMQVIST A, et al.Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy[J].Physical Review Letters, 2009, 102:075504. doi: 10.1103/PhysRevLett.102.075504
    [30] UPADHYAY M, ABHAYA S, MURUGAVEL S, et al.Experimental evidence for presence of voids in phase change memory material[J].RSC Advances, 2014, 4(8):3659-3668. doi: 10.1039/C3RA44246B
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  89
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-18
  • 录用日期:  2017-06-12
  • 网络出版日期:  2018-05-20

目录

    /

    返回文章
    返回
    常见问答